izpis_h1_title_alt

General position polynomials
ID Iršič, Vesna (Author), ID Klavžar, Sandi (Author), ID Rus, Gregor (Author), ID Tuite, James (Author)

.pdfPDF - Presentation file, Download (378,80 KB)
MD5: 6F80C019E2EF80AADC55B4BBDEFD7925
URLURL - Source URL, Visit https://link.springer.com/article/10.1007/s00025-024-02133-3 This link opens in a new window

Abstract
A subset of vertices of a graph $G$ is a general position set if no triple of vertices from the set lie on a common shortest path in $G$. In this paper we introduce the general position polynomial as $\sum_{i \geq 0} a_i x^i$, where $a_i$ is the number of distinct general position sets of $G$ with cardinality $i$. The polynomial is considered for several well-known classes of graphs and graph operations. It is shown that the polynomial is not unimodal in general, not even on trees. On the other hand, several classes of graphs, including Kneser graphs $K(n,2)$, with unimodal general position polynomials are presented.

Language:English
Keywords:general position set, general position number, general position polynomial, unimodality, trees, Cartesian product of graphs, Kneser graphs
Work type:Article
Typology:1.01 - Original Scientific Article
Organization:FMF - Faculty of Mathematics and Physics
Publication status:Published
Publication version:Version of Record
Year:2024
Number of pages:16 str.
Numbering:Vol. 79, iss. 3, art. 110
PID:20.500.12556/RUL-154746 This link opens in a new window
UDC:519.17
ISSN on article:1422-6383
DOI:10.1007/s00025-024-02133-3 This link opens in a new window
COBISS.SI-ID:187024387 This link opens in a new window
Publication date in RUL:28.02.2024
Views:721
Downloads:446
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Record is a part of a journal

Title:Results in mathematics
Shortened title:Results math.
Publisher:Springer Nature
ISSN:1422-6383
COBISS.SI-ID:514963225 This link opens in a new window

Licences

License:CC BY 4.0, Creative Commons Attribution 4.0 International
Link:http://creativecommons.org/licenses/by/4.0/
Description:This is the standard Creative Commons license that gives others maximum freedom to do what they want with the work as long as they credit the author.

Secondary language

Language:Slovenian
Keywords:množice v splošni legi, število splošne lege, polinom splošne lege, unimodalnost, drevesa, kartezični produkt grafov, Kneserjevi grafi

Projects

Funder:ARIS - Slovenian Research and Innovation Agency
Project number:P1-0297
Name:Teorija grafov

Funder:ARIS - Slovenian Research and Innovation Agency
Project number:J1-2452
Name:Strukturni, optimizacijski in algoritmični problemi v geometrijskih in topoloških predstavitvah grafov

Funder:ARIS - Slovenian Research and Innovation Agency
Project number:N1-0285
Name:Metrični problemi v grafih in hipergrafih

Funder:ARIS - Slovenian Research and Innovation Agency
Project number:Z1-50003
Name:Igra policajev in roparja na grafih in geodetskih prostorih

Funder:EC - European Commission
Funding programme:HE
Project number:101071836
Name:Predicting flow and transport in complex Karst systems
Acronym:KARST

Funder:Other - Other funder or multiple funders
Funding programme:LMS, Research in Pairs
Project number:42235

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back