Your browser does not allow JavaScript!
JavaScript is necessary for the proper functioning of this website. Please enable JavaScript or use a modern browser.
Open Science Slovenia
Open Science
DiKUL
slv
|
eng
Search
Browse
New in RUL
About RUL
In numbers
Help
Sign in
General position polynomials
ID
Iršič, Vesna
(
Author
),
ID
Klavžar, Sandi
(
Author
),
ID
Rus, Gregor
(
Author
),
ID
Tuite, James
(
Author
)
PDF - Presentation file,
Download
(378,80 KB)
MD5: 6F80C019E2EF80AADC55B4BBDEFD7925
URL - Source URL, Visit
https://link.springer.com/article/10.1007/s00025-024-02133-3
Image galllery
Abstract
A subset of vertices of a graph $G$ is a general position set if no triple of vertices from the set lie on a common shortest path in $G$. In this paper we introduce the general position polynomial as $\sum_{i \geq 0} a_i x^i$, where $a_i$ is the number of distinct general position sets of $G$ with cardinality $i$. The polynomial is considered for several well-known classes of graphs and graph operations. It is shown that the polynomial is not unimodal in general, not even on trees. On the other hand, several classes of graphs, including Kneser graphs $K(n,2)$, with unimodal general position polynomials are presented.
Language:
English
Keywords:
general position set
,
general position number
,
general position polynomial
,
unimodality
,
trees
,
Cartesian product of graphs
,
Kneser graphs
Work type:
Article
Typology:
1.01 - Original Scientific Article
Organization:
FMF - Faculty of Mathematics and Physics
Publication status:
Published
Publication version:
Version of Record
Year:
2024
Number of pages:
16 str.
Numbering:
Vol. 79, iss. 3, art. 110
PID:
20.500.12556/RUL-154746
UDC:
519.17
ISSN on article:
1422-6383
DOI:
10.1007/s00025-024-02133-3
COBISS.SI-ID:
187024387
Publication date in RUL:
28.02.2024
Views:
733
Downloads:
446
Metadata:
Cite this work
Plain text
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
Copy citation
Share:
Record is a part of a journal
Title:
Results in mathematics
Shortened title:
Results math.
Publisher:
Springer Nature
ISSN:
1422-6383
COBISS.SI-ID:
514963225
Licences
License:
CC BY 4.0, Creative Commons Attribution 4.0 International
Link:
http://creativecommons.org/licenses/by/4.0/
Description:
This is the standard Creative Commons license that gives others maximum freedom to do what they want with the work as long as they credit the author.
Secondary language
Language:
Slovenian
Keywords:
množice v splošni legi
,
število splošne lege
,
polinom splošne lege
,
unimodalnost
,
drevesa
,
kartezični produkt grafov
,
Kneserjevi grafi
Projects
Funder:
ARIS - Slovenian Research and Innovation Agency
Project number:
P1-0297
Name:
Teorija grafov
Funder:
ARIS - Slovenian Research and Innovation Agency
Project number:
J1-2452
Name:
Strukturni, optimizacijski in algoritmični problemi v geometrijskih in topoloških predstavitvah grafov
Funder:
ARIS - Slovenian Research and Innovation Agency
Project number:
N1-0285
Name:
Metrični problemi v grafih in hipergrafih
Funder:
ARIS - Slovenian Research and Innovation Agency
Project number:
Z1-50003
Name:
Igra policajev in roparja na grafih in geodetskih prostorih
Funder:
EC - European Commission
Funding programme:
HE
Project number:
101071836
Name:
Predicting flow and transport in complex Karst systems
Acronym:
KARST
Funder:
Other - Other funder or multiple funders
Funding programme:
LMS, Research in Pairs
Project number:
42235
Similar documents
Similar works from RUL:
Similar works from other Slovenian collections:
Back