izpis_h1_title_alt

A global modeling framework for load forecasting in distribution networks
ID Grabner, Miha (Avtor), ID Wang, Yi (Avtor), ID Wen, Qingsong (Avtor), ID Blažič, Boštjan (Avtor), ID Štruc, Vitomir (Avtor)

.pdfPDF - Predstavitvena datoteka, prenos (2,89 MB)
MD5: 9EEB22067C18227C845236E0A08838D3
URLURL - Izvorni URL, za dostop obiščite https://ieeexplore.ieee.org/document/10092804 Povezava se odpre v novem oknu

Izvleček
With the increasing numbers of smart meter installations, scalable and efficient load forecasting techniques are critically needed to ensure sustainable situation awareness within the distribution networks. Distribution networks include a large amount of different loads at various aggregation levels, such as individual consumers, low-voltage feeders, and transformer stations. It is impractical to develop individual (or so-called local) forecasting models for each load separately. Additionally, such local models also (i) (largely) ignore the strong dependencies between different loads that might be present due to their spatial proximity and the characteristics of the distribution network, (ii) require historical data for each load to be able to make forecasts, and (iii) are incapable of adjusting to changes in the load behavior without retraining. To address these issues, we propose a global modeling framework for load forecasting in distribution networks that, unlike its local competitors, relies on a single global model to generate forecasts for a large number of loads. The global nature of the framework, significantly reduces the computational burden typically required when training multiple local forecasting models, efficiently exploits the cross-series information shared among different loads, and facilitates forecasts even when historical data for a load is missing or the behavior of a load evolves over time. To further improve on the performance of the proposed framework, an unsupervised localization mechanism and optimal ensemble construction strategy are also proposed to localize/personalize the global forecasting model to different load characteristics. Our experimental results show that the proposed framework outperforms naive benchmarks by more than 25% (in terms of Mean Absolute Error) on real-world dataset while exhibiting highly desirable characteristics when compared to the local models that are predominantly used in the literature. All source code and data are made publicly available to enable reproducibility: https://github.com/mihagrabner/GlobalModelingFramework.

Jezik:Angleški jezik
Ključne besede:load forecasting, distribution networks, predictive models, smart meter, global model, deep learning
Vrsta gradiva:Članek v reviji
Tipologija:1.01 - Izvirni znanstveni članek
Organizacija:FE - Fakulteta za elektrotehniko
Status publikacije:Objavljeno
Različica publikacije:Objavljena publikacija
Leto izida:2023
Št. strani:Str. 4927–4941
Številčenje:Vol. 14, no. 6
PID:20.500.12556/RUL-154010 Povezava se odpre v novem oknu
UDK:621.31
ISSN pri članku:1949-3053
DOI:10.1109/TSG.2023.3264525 Povezava se odpre v novem oknu
COBISS.SI-ID:148068611 Povezava se odpre v novem oknu
Datum objave v RUL:18.01.2024
Število ogledov:757
Število prenosov:66
Metapodatki:XML DC-XML DC-RDF
:
Kopiraj citat
Objavi na:Bookmark and Share

Gradivo je del revije

Naslov:IEEE transactions on smart grid
Skrajšan naslov:IEEE trans. smart grid
Založnik:Institute of Electrical and Electronics Engineers
ISSN:1949-3053
COBISS.SI-ID:7809108 Povezava se odpre v novem oknu

Licence

Licenca:CC BY 4.0, Creative Commons Priznanje avtorstva 4.0 Mednarodna
Povezava:http://creativecommons.org/licenses/by/4.0/deed.sl
Opis:To je standardna licenca Creative Commons, ki daje uporabnikom največ možnosti za nadaljnjo uporabo dela, pri čemer morajo navesti avtorja.

Sekundarni jezik

Jezik:Slovenski jezik
Ključne besede:napovedovanje odjema, distribucijsko omrežje, modeli za napovedovanje

Projekti

Financer:ARRS - Agencija za raziskovalno dejavnost Republike Slovenije
Številka projekta:P2-0250
Naslov:Metrologija in biometrični sistemi

Financer:ARRS - Agencija za raziskovalno dejavnost Republike Slovenije
Številka projekta:L2-4436
Naslov:Optimizacija obratovanja nizkonapetostnega distribucijskega omrežja z integrirano fleksibilnostjo v realnem času s pomočjo globokega spodbujevanega učenja (DRIFT)

Financer:Drugi - Drug financer ali več financerjev
Program financ.:Alibaba Innovative Research Programme

Podobna dela

Podobna dela v RUL:
Podobna dela v drugih slovenskih zbirkah:

Nazaj