Vaš brskalnik ne omogoča JavaScript!
JavaScript je nujen za pravilno delovanje teh spletnih strani. Omogočite JavaScript ali pa uporabite sodobnejši brskalnik.
Nacionalni portal odprte znanosti
Odprta znanost
DiKUL
slv
|
eng
Iskanje
Brskanje
Novo v RUL
Kaj je RUL
V številkah
Pomoč
Prijava
Exploring bias in sclera segmentation models : a group evaluation approach
ID
Vitek, Matej
(
Avtor
),
ID
Peer, Peter
(
Avtor
),
ID
Štruc, Vitomir
(
Avtor
), et al.
PDF - Predstavitvena datoteka,
prenos
(3,57 MB)
MD5: 96A2AE11FFDBF0105FF7F4AD8FCA89BE
URL - Izvorni URL, za dostop obiščite
https://ieeexplore.ieee.org/document/9926136
Galerija slik
Izvleček
Bias and fairness of biometric algorithms have been key topics of research in recent years, mainly due to the societal, legal and ethical implications of potentially unfair decisions made by automated decision-making models. A considerable amount of work has been done on this topic across different biometric modalities, aiming at better understanding the main sources of algorithmic bias or devising mitigation measures. In this work, we contribute to these efforts and present the first study investigating bias and fairness of sclera segmentation models. Although sclera segmentation techniques represent a key component of sclera-based biometric systems with a considerable impact on the overall recognition performance, the presence of different types of biases in sclera segmentation methods is still underexplored. To address this limitation, we describe the results of a group evaluation effort (involving seven research groups), organized to explore the performance of recent sclera segmentation models within a common experimental framework and study performance differences (and bias), originating from various demographic as well as environmental factors. Using five diverse datasets, we analyze seven independently developed sclera segmentation models in different experimental configurations. The results of our experiments suggest that there are significant differences in the overall segmentation performance across the seven models and that among the considered factors, ethnicity appears to be the biggest cause of bias. Additionally, we observe that training with representative and balanced data does not necessarily lead to less biased results. Finally, we find that in general there appears to be a negative correlation between the amount of bias observed (due to eye color, ethnicity and acquisition device) and the overall segmentation performance, suggesting that advances in the field of semantic segmentation may also help with mitigating bias.
Jezik:
Angleški jezik
Ključne besede:
biometrics
,
sclera segmentation
,
ocular biometrics
,
bias
,
fairness
Vrsta gradiva:
Članek v reviji
Tipologija:
1.01 - Izvirni znanstveni članek
Organizacija:
FRI - Fakulteta za računalništvo in informatiko
FE - Fakulteta za elektrotehniko
Status publikacije:
Objavljeno
Različica publikacije:
Objavljena publikacija
Leto izida:
2023
Št. strani:
Str. 190-205
Številčenje:
Vol. 18
PID:
20.500.12556/RUL-154008
UDK:
004.93:57.087.1
ISSN pri članku:
1556-6013
DOI:
10.1109/TIFS.2022.3216468
COBISS.SI-ID:
127112963
Datum objave v RUL:
18.01.2024
Število ogledov:
419
Število prenosov:
125
Metapodatki:
Citiraj gradivo
Navadno besedilo
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
Kopiraj citat
Objavi na:
Gradivo je del revije
Naslov:
IEEE transactions on information forensics and security
Založnik:
Institute of Electrical and Electronics Engineers
ISSN:
1556-6013
COBISS.SI-ID:
5202004
Licence
Licenca:
CC BY 4.0, Creative Commons Priznanje avtorstva 4.0 Mednarodna
Povezava:
http://creativecommons.org/licenses/by/4.0/deed.sl
Opis:
To je standardna licenca Creative Commons, ki daje uporabnikom največ možnosti za nadaljnjo uporabo dela, pri čemer morajo navesti avtorja.
Sekundarni jezik
Jezik:
Slovenski jezik
Ključne besede:
biometrija
,
segmentacija beločnice
,
očesna biometrija
,
pristranskost
,
pravičnost
Projekti
Financer:
ARRS - Agencija za raziskovalno dejavnost Republike Slovenije
Številka projekta:
P2-0250
Naslov:
Metrologija in biometrični sistemi
Financer:
ARRS - Agencija za raziskovalno dejavnost Republike Slovenije
Številka projekta:
P2-0214
Naslov:
Računalniški vid
Financer:
Drugi - Drug financer ali več financerjev
Program financ.:
National Natural Science Foundation of China
Številka projekta:
62106015
Financer:
Drugi - Drug financer ali več financerjev
Program financ.:
BUCEA, Research Capacity Promotion Program for Young Scholars
Številka projekta:
X21079
Financer:
Drugi - Drug financer ali več financerjev
Program financ.:
BUCEA, Pyramid Talent Training
Številka projekta:
JDYC20220819
Podobna dela
Podobna dela v RUL:
Podobna dela v drugih slovenskih zbirkah:
Nazaj