izpis_h1_title_alt

Uporaba stohastične optimalne kontrole za optimizacijo portfelja : magistrsko delo
ID Vidmar, Lara (Avtor), ID Perman, Mihael (Mentor) Več o mentorju... Povezava se odpre v novem oknu

.pdfPDF - Predstavitvena datoteka, prenos (980,44 KB)
MD5: 02E61591C99D950896CC9FCFA9F59C5E

Izvleček
Stohastična kontrola spada med stohastične metode, ki se ukvarjajo z dinamičnimi sistemi, ki so podvrženi negotovosti. Pri optimizaciji portfelja je cilj metod stohastične kontrole poiskati optimalno naložbeno strategijo, ki maksimizira pričakovane donose ali dosega druge cilje ob upoštevanju tveganja, povezanega z negotovimi tržnimi pogoji. Stohastične metode kontrole pa izrecno vključujejo stohastično naravo donosov sredstev in so namenjene oblikovanju strategij, ki so odporne proti tržnim nihanjem. Z nelinearno parcialno diferencialno enačbo imenovano Hamilton–Jacobi–Bellmanova (HJB) enačba definiramo potrebne in zadostne pogoje za optimalnost kontrole glede na funkcijo izgube. V splošnem je težko rešljiva, obstoj in enoličnost rešitve nista trivialna. Za izračun eksplicitne rešitve so potrebne predpostavke v procesu. Ena večjih predpostavk, da lahko dobimo eksplicitno rešitev, je predpostavka o konstantnih koeficientih trga. Če hočemo napovedati uteži portfelja in s tem donosnost naših naložb v realnem času, je potrebno vzeti tudi realne koeficiente trga, ki pa se spreminjajo dnevno, zato je ta predpostavka veliko prestroga. Pri primerjavi stohastične metode kontrole in uporabo nekaterih bolj sodobnih tehnik, kot so strojno učenje, za enostaven primer portfelja s 5 delnicami, se je izkazala sodobna tehnika boljša.

Jezik:Slovenski jezik
Ključne besede:Metoda stohastične kontrole, problem zvezne optimizacije portfelja, HJB enačba, referenčni indeks, markovske kontrole
Vrsta gradiva:Magistrsko delo/naloga
Tipologija:2.09 - Magistrsko delo
Organizacija:FMF - Fakulteta za matematiko in fiziko
Leto izida:2024
PID:20.500.12556/RUL-153456 Povezava se odpre v novem oknu
COBISS.SI-ID:179517187 Povezava se odpre v novem oknu
Datum objave v RUL:07.01.2024
Število ogledov:818
Število prenosov:93
Metapodatki:XML DC-XML DC-RDF
:
Kopiraj citat
Objavi na:Bookmark and Share

Sekundarni jezik

Jezik:Angleški jezik
Naslov:Using stochastic control method for portfolio optimisation
Izvleček:
The stochastic control method is one of the stochastic methods that deals with dynamic systems subject to uncertainty. In portfolio optimization, the objective of stochastic control methods is to find the optimal investment strategy that maximizes expected returns or achieves other objectives, taking into account the risk associated with uncertain market conditions. Stochastic control methods, on the other hand, explicitly incorporate the stochastic nature of asset returns and are designed to find strategies that are resilient to market fluctuations. A non-linear partial differential equation called the Hamilton-Jacobi-Bellman (HJB) equation is used to define necessary and sufficient conditions for the optimality of the control with respect to the loss function. In general, it is computationally intractable and the existence and uniqueness of the solution are non-trivial. In order to compute an explicit solution, assumptions are needed in the process. One of the major assumptions to be able to obtain an explicit solution is the assumption of constant market coefficients. If we want to predict the portfolio weights and thus the return on our investments in real time, we also need to take the real market coefficients, which change on a daily basis, so this assumption is much too strict. When comparing the stochastic control method and the use of more modern techniques, such as machine learning, for a simple example of a portfolio of 5 stocks, the modern technique proves superior.

Ključne besede:Stochastic Control Method, Continuous-Time portfolio problem, HJB equation, Benchmark, Markov controls

Podobna dela

Podobna dela v RUL:
Podobna dela v drugih slovenskih zbirkah:

Nazaj