izpis_h1_title_alt

IgA-BEM for 3D Helmholtz problems using conforming and non-conforming multi-patch discretizations and B-spline tailored numerical integration
ID Degli Esposti, Bruno (Avtor), ID Falini, Antonella (Avtor), ID Kanduč, Tadej (Avtor), ID Sampoli, Maria Lucia (Avtor), ID Sestini, Alessandra (Avtor)

.pdfPDF - Predstavitvena datoteka, prenos (2,54 MB)
MD5: 8304DDCF88E0F8099E66FB099E5EFFE2
URLURL - Izvorni URL, za dostop obiščite https://www.sciencedirect.com/science/article/pii/S0898122123003061 Povezava se odpre v novem oknu

Izvleček
An Isogeometric Boundary Element Method (IgA-BEM) is considered for the numerical solution of Helmholtz problems on 3D bounded or unbounded domains, admitting a smooth multi-patch representation of their finite boundary surface. The discretization spaces are formed by $C^0$ inter-patch continuous functional spaces whose restriction to a patch simplifies to the span of tensor product B-splines composed with the given patch NURBS parameterization. Both conforming and non-conforming spaces are allowed, so that local refinement is possible at the patch level. For regular and singular integration, the proposed model utilizes a numerical procedure defined on the support of each trial B-spline function, which makes possible a function-by-function implementation of the matrix assembly phase. Spline quasi-interpolation is the common ingredient of all the considered quadrature rules; in the singular case it is combined with a B-spline recursion over the spline degree and with a singularity extraction technique, extended to the multi-patch setting for the first time. A threshold selection strategy is proposed to automatically distinguish between nearly singular and regular integrals. The non-conforming $C^0$ joints between spline spaces on different patches are implemented as linear constraints based on knot removal conditions, and do not require a hierarchical master-slave relation between neighbouring patches. Numerical examples on relevant benchmarks show that the expected convergence orders are achieved with uniform discretization and a small number of uniformly spaced quadrature nodes.

Jezik:Angleški jezik
Ključne besede:Helmholtz equation, Isogeometric Analysis, IgA, Boundary Element Method, BEM, non-conforming discretization, singular integral, nearly singular integral, numerical integration, B-spline quasi-interpolation
Vrsta gradiva:Članek v reviji
Tipologija:1.01 - Izvirni znanstveni članek
Organizacija:FMF - Fakulteta za matematiko in fiziko
FS - Fakulteta za strojništvo
Status publikacije:Objavljeno
Različica publikacije:Objavljena publikacija
Leto izida:2023
Št. strani:Str. 164-184
Številčenje:Vol. 147
PID:20.500.12556/RUL-153400 Povezava se odpre v novem oknu
UDK:519.6
ISSN pri članku:0898-1221
DOI:10.1016/j.camwa.2023.07.012 Povezava se odpre v novem oknu
COBISS.SI-ID:178695171 Povezava se odpre v novem oknu
Datum objave v RUL:03.01.2024
Število ogledov:929
Število prenosov:33
Metapodatki:XML DC-XML DC-RDF
:
Kopiraj citat
Objavi na:Bookmark and Share

Gradivo je del revije

Naslov:Computers & mathematics with applications
Skrajšan naslov:Comput. math. appl.
Založnik:Elsevier
ISSN:0898-1221
COBISS.SI-ID:15336965 Povezava se odpre v novem oknu

Licence

Licenca:CC BY 4.0, Creative Commons Priznanje avtorstva 4.0 Mednarodna
Povezava:http://creativecommons.org/licenses/by/4.0/deed.sl
Opis:To je standardna licenca Creative Commons, ki daje uporabnikom največ možnosti za nadaljnjo uporabo dela, pri čemer morajo navesti avtorja.

Projekti

Financer:Drugi - Drug financer ali več financerjev
Program financ.:ACRI, SIMAI

Financer:Drugi - Drug financer ali več financerjev
Program financ.:PON Ricerca e Innovazione, FSE REACT-EU, Dottorati e contratti di ricerca su tematiche dell’innovazione
Številka projekta:H95F21001230006

Financer:EC - European Commission
Program financ.:NextGenerationEU, National Recovery and Resilience Plan
Številka projekta:B83C22002830001
Naslov:National center for HPC, big data and quantum computing

Financer:Drugi - Drug financer ali več financerjev
Program financ.:INdAM, GNCS
Številka projekta:E55F22000270001

Podobna dela

Podobna dela v RUL:
Podobna dela v drugih slovenskih zbirkah:

Nazaj