Vaš brskalnik ne omogoča JavaScript!
JavaScript je nujen za pravilno delovanje teh spletnih strani. Omogočite JavaScript ali pa uporabite sodobnejši brskalnik.
Nacionalni portal odprte znanosti
Odprta znanost
DiKUL
slv
|
eng
Iskanje
Brskanje
Novo v RUL
Kaj je RUL
V številkah
Pomoč
Prijava
A hybrid modeling strategy for training data generation in machine learning-based structural health monitoring
ID
Vrtač, Tim
(
Avtor
),
ID
Ocepek, Domen
(
Avtor
),
ID
Česnik, Martin
(
Avtor
),
ID
Čepon, Gregor
(
Avtor
),
ID
Boltežar, Miha
(
Avtor
)
PDF - Predstavitvena datoteka,
prenos
(3,53 MB)
MD5: 8F6B5A93ECFA35C4E13F80109E11A9ED
URL - Izvorni URL, za dostop obiščite
https://www.sciencedirect.com/science/article/pii/S0888327023008452
Galerija slik
Izvleček
Concerning the cost- and resource-saving maintenance of assembly products, it is vital to detect any potential malfunctions, defects or structural damage at the earliest-possible stage. For this reason, considerable efforts are being put into the development of Structural Health Monitoring, a field encompassing different approaches to damage identification and capable of preventing defects and even failure. Structural Health Monitoring is often supported by machine learning, a tool for rapid and effective damage identification that can recognize patterns or changes in the data received from the structure. Despite the advances machine learning has made in recent years, obtaining a suitable data set for the efficient training of machine learning algorithms within Structural Health Monitoring remains a challenge. Currently, the data are usually obtained experimentally, with numerical or analytical models. However, the experimental approach can often be time consuming, while the reliability of numerically obtained data relies heavily on the accuracy of the numerical models in capturing the true behavior of the structure. Analytical models may be constrained by the complexity of the observed object. In this paper an alternative approach based on an experimental–numerical (i.e., hybrid) modeling approach is proposed to build a training set for Structural Health Monitoring. Frequency Based Substructuring is utilized to determine the response model of the assembled system based on the properties of its components as well as to mix experimental and numerical models, while leveraging the advantages of each. This makes it possible to generate the samples of the training set in the form of hybrid models of the structure of interest, exhibiting the realistic properties of a physical structure, with a reasonable measurement effort. Here, the approach is demonstrated for the process of joint-damage identification.
Jezik:
Angleški jezik
Ključne besede:
structural health monitoring
,
joint-damage identification
,
Frequency Based Substructuring
,
machine learning
,
training set generation
Vrsta gradiva:
Članek v reviji
Tipologija:
1.01 - Izvirni znanstveni članek
Organizacija:
FS - Fakulteta za strojništvo
Status publikacije:
Objavljeno
Različica publikacije:
Objavljena publikacija
Leto izida:
2024
Št. strani:
20 str.
Številčenje:
Vol. 207, art. 110937
PID:
20.500.12556/RUL-152360
UDK:
004.85:538.91
ISSN pri članku:
1096-1216
DOI:
10.1016/j.ymssp.2023.110937
COBISS.SI-ID:
173198339
Datum objave v RUL:
22.11.2023
Število ogledov:
722
Število prenosov:
71
Metapodatki:
Citiraj gradivo
Navadno besedilo
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
Kopiraj citat
Objavi na:
Gradivo je del revije
Naslov:
Mechanical systems and signal processing
Skrajšan naslov:
Mech. syst. signal process.
Založnik:
Elsevier
ISSN:
1096-1216
COBISS.SI-ID:
15296283
Licence
Licenca:
CC BY 4.0, Creative Commons Priznanje avtorstva 4.0 Mednarodna
Povezava:
http://creativecommons.org/licenses/by/4.0/deed.sl
Opis:
To je standardna licenca Creative Commons, ki daje uporabnikom največ možnosti za nadaljnjo uporabo dela, pri čemer morajo navesti avtorja.
Sekundarni jezik
Jezik:
Slovenski jezik
Ključne besede:
spremljanje poškodovanosti struktur
,
identifikacija poškodb na spojih
,
frekvenčno podstrukturiranje
,
strojno učenje
,
tvorjenje učne množice
Projekti
Financer:
EC - European Commission
Program financ.:
HE
Številka projekta:
101091536
Naslov:
Digitalised Value Management for Unlocking the potential of the Circular Manufacturing Systems with integrated digital solutions
Akronim:
DiCiM
Podobna dela
Podobna dela v RUL:
Podobna dela v drugih slovenskih zbirkah:
Nazaj