izpis_h1_title_alt

Opredelitev kompleksnih polimerov s tekočinskimi separacijskimi tehnikami
ID Zdovc, Blaž (Avtor), ID Žagar, Ema (Mentor) Več o mentorju... Povezava se odpre v novem oknu

.pdfPDF - Predstavitvena datoteka, prenos (10,15 MB)
MD5: B53CE5CB2A49B2E1C34AAE780CFD7DBF

Izvleček
Razvoj sodobnih polimerizacijskih postopkov omogoča pripravo kompleksnih (ko)polimerov različne kemijske sestave, molske mase, arhitekture, mikrostrukture in/ali vrste končnih skupin. V prvem delu doktorske disertacije je bil moj namen preučiti vpliv mikrostrukture na kromatografsko obnašanje kopolimerov kot tudi na njihove lastnosti v raztopini in v trdnem stanju (termične lastnosti). V ta namen sem preučeval tri gradientne kopolimere in en blok kopolimer z različno porazdeljenimi ponavljajočimi se enotami propilen oksida (PO) in propilen ftalata (POPA) vzdolž kopolimernih verig. Kopolimeri so imeli primerljiva povprečja molskih mas obeh komonomernih komponent in primerljivo povprečno kemijsko sestavo. Prav tako so izkazovali ozko porazdelitev v molski masi in v kemijski sestavi. Tako sem lahko zanemaril vpliv teh dveh parametrov pri preučevanju zadrževanja kopolimerov v koloni pri tekočinski kromatografiji pri kritičnih pogojih (LCCC) in pri gradientni tekočinski adsorpcijski kromatografiji (gLAC) na kolonah, polnjenih z reverzno stacionarno fazo, kot sta polistiren, zamrežen z divinilbenzenom (PS-DVB), in silikagel, oplaščen s C18 alkilnimi verigami. Gradientni kopolimeri so se na obeh reverznih stacionarnih fazah v primeru gLAC in LCCC za POPA komponento eluirali iz kolone v vrstnem redu naraščajočega gradienta. Rezultati diferenčne dinamične kalorimetrije kopolimerov so pokazali, da gradientni kopolimer z najstrmejšim gradientom izkazuje dve temperaturi steklastega prehoda, ki se ujemata s temperaturama steklastega prehoda obeh homopolimerov, kot je to značilno za blok kopolimere, medtem ko je gradientni kopolimer z najpoložnejšim gradientom izkazoval le en širok steklast prehod, kar je značilnost naključnih kopolimerov. Kot v obeh omenjenih primerih, ima mikrostruktura vpliv tudi na lastnosti kopolimerov v raztopinah, saj sem z naraščajočim gradientom v porazdelitvi komonomernih enot vzdolž kopolimernih verig moral dodati več termodinamsko slabega topila, da je raztopina kopolimera pomotnela. V drugem delu doktorske disertacije je bil moj namen razviti tekočinsko kromatografsko metodo, ki bo ločevala reciklirane polieter poliole (RP) glede na vrsto končnih skupin. Pri kemijski reciklaži poliuretanskih (PU) pen lahko RP v primeru nepopolne razgradnje uretanskih skupin v strukturi pen vsebujejo poliolne verige različnih dolžin, ki se razlikujejo tudi v vrsti končnih skupin (hidroksilna in/ali aromatsko-aminska). Poznavanje vrste končnih skupin RP je pomembno pri sintezi novih PU pen iz RP. Zato sem razvil HPLC metodo s tekočinsko adsorbcijskim mehanizmom (LAC), ki ločuje poliolne verige glede na vrsto končnih skupin na SHARC 1 koloni. Kvaliteta ločbe je bila odvisna od sestave mobilne faze, to je predvsem od količine dodane mravljinčne kisline in amonijevega formata. Uspešna ločba delno aromatsko aminsko funkcionaliziranih poliolnih verig od popolnoma hidroksilno funkcionaliziranih poliolnih verig omogoča določitev vsebnosti slednjih v RP.

Jezik:Slovenski jezik
Ključne besede:tekočinske kromatografske tehnike, večdetekcijski sistem, gradientni kopolimeri, mikrostruktura, sipanje svetlobe, termične lastnosti, recikliran poliol, vrsta končnih skupin
Vrsta gradiva:Doktorsko delo/naloga
Tipologija:2.08 - Doktorska disertacija
Organizacija:FKKT - Fakulteta za kemijo in kemijsko tehnologijo
Leto izida:2023
PID:20.500.12556/RUL-151703 Povezava se odpre v novem oknu
COBISS.SI-ID:174690307 Povezava se odpre v novem oknu
Datum objave v RUL:17.10.2023
Število ogledov:321
Število prenosov:53
Metapodatki:XML RDF-CHPDL DC-XML DC-RDF
:
Kopiraj citat
Objavi na:Bookmark and Share

Sekundarni jezik

Jezik:Angleški jezik
Naslov:Characterization of complex polymers by liquid separation techniques
Izvleček:
The development of modern polymerization processes allows the preparation of complex (co)polymers with different chemical composition, molar mass, architecture, microstructure and/or end-group functionality. In the first part of the PhD thesis, the aim was to investigate the influence of the microstructure on the chromatographic behavior of copolymers as well as on their properties in solution and in the solid state (thermal properties). For this purpose, I studied three gradient copolymers and one block copolymer with differently distributed repeating units of propylene oxide (PO) and propylene phthalate (POPA) along the copolymer chains. All copolymers had comparable molar mass averages of both components and comparable chemical compositions as well as narrow distributions in molar mass and chemical composition, to avoid the influence of both parameters on the chromatographic behavior of the copolymers in liquid chromatography under critical conditions (LCCC) and gradient liquid adsorption chromatography (gLAC) on columns packed with a reversed stationary phase that was polystyrene cross-linked with divinylbenzene (PS-DVB) or silica coated with C18 alkyl chains. On both reversed stationary phases, the gradient copolymers eluted from the column according to the increasing strength of the gradient in gLAC or LCCC for the POPA component. The differential scanning calorimetry results showed that the gradient copolymer with the strongest gradient has two glass transition temperatures like a block copolymer, which correspond to the glass transition regions of the corresponding homopolymers. On the other hand, the gradient copolymer with the weakest gradient exhibits one broad glass transition region, similar to a random copolymer. As in the above cases, the microstructure also affects the solution properties of the copolymers, since a higher volume fraction of the thermodynamically poor solvent was required to observe the turbidity of the copolymer solution with increasing gradient strength in the comonomer distribution along the copolymer chains. The second part of the PhD thesis dealt with the development of a liquid chromatography method for end-group characterization of recycled polyether polyols (RP). The chemical recycling of polyurethane (PU) foams can result in polyol chains of different lengths, which also differ in the type of the end-groups (hydroxyl and/or aromatic amine) when the urethane groups in the PU foam structure are incompletely degraded. Since the type of the polyol end-groups is important in the synthesis of PU foams from RPs, I developed an HPLC method using the liquid adsorption mechanism (LAC) to separate the polyol chains according to the end-group functionality on a SHARC 1 column. The quality of the separation depended on the composition of the mobile phase, mainly on the amount of formic acid and ammonium formate additives in the mobile phase. The successful separation of partially aromatic amino end-functionalized polyol chains from fully hydroxyl-functionalized polyol chains allows the quantification of the latter in RPs.

Ključne besede:liquid chromatographic techniques, multi-detection system, gradient copolymers, microstructure, light scattering, thermal properties, recycled polyol, end-group functionality

Podobna dela

Podobna dela v RUL:
Podobna dela v drugih slovenskih zbirkah:

Nazaj