Vaš brskalnik ne omogoča JavaScript!
JavaScript je nujen za pravilno delovanje teh spletnih strani. Omogočite JavaScript ali pa uporabite sodobnejši brskalnik.
Nacionalni portal odprte znanosti
Odprta znanost
DiKUL
slv
|
eng
Iskanje
Brskanje
Novo v RUL
Kaj je RUL
V številkah
Pomoč
Prijava
Miniature mobile robot detection using an ultra-low resolution time-of-flight sensor
ID
Pleterski, Jan
(
Avtor
),
ID
Škulj, Gašper
(
Avtor
),
ID
Esnault, Corentin
(
Avtor
),
ID
Puc, Jernej
(
Avtor
),
ID
Vrabič, Rok
(
Avtor
),
ID
Podržaj, Primož
(
Avtor
)
PDF - Predstavitvena datoteka,
prenos
(1,91 MB)
MD5: 11857F79E5C26B474CB81BFCA1F46D2B
URL - Izvorni URL, za dostop obiščite
https://ieeexplore.ieee.org/document/10262176
Galerija slik
Izvleček
Miniature mobile robots in multi-robotic systems require reliable environmental perception for successful navigation, especially when operating in the real-world environment. One of the sensors that have recently become accessible in microrobotics due to their size and cost-effectiveness is a multi-zone time-of-flight (ToF) sensor. In this research, object classification using a convolutional neural network (CNN) based on an ultra-low resolution ToF sensor is implemented on a miniature mobile robot to distinguish the robot from other objects. The main contribution of this work is an accurate classification system implemented on low resolution, low processing power and low power consumption hardware. The developed system consists of a VL53L5CX ToF sensor with an 8x8 depth image and a low-power RP2040 microcontroller. The classification system is based on a customised CNN architecture to determine the presence of a miniature mobile robot within the observed terrain, primarily characterized by sand and rocks. The developed system trained on a custom dataset can detect a mobile robot with an accuracy of 91.8% when deployed on a microcontroller. The model implementation requires 7 kB of RAM, has an inference time of 34 ms, and an energy consumption during inference of 3.685 mJ.
Jezik:
Angleški jezik
Ključne besede:
miniature robots
,
microcontrollers
,
time-of-flight
,
convolutional neural network
,
binary classification
,
ultra-low resolution
,
low power
,
TinyML
Vrsta gradiva:
Članek v reviji
Tipologija:
1.01 - Izvirni znanstveni članek
Organizacija:
FS - Fakulteta za strojništvo
Status publikacije:
Objavljeno
Različica publikacije:
Objavljena publikacija
Leto izida:
2023
Št. strani:
9 str.
Številčenje:
Vol. 72, art. 5028009
PID:
20.500.12556/RUL-151584
UDK:
681.5:007.52
ISSN pri članku:
0018-9456
DOI:
10.1109/TIM.2023.3318710
COBISS.SI-ID:
166014211
Datum objave v RUL:
10.10.2023
Število ogledov:
887
Število prenosov:
47
Metapodatki:
Citiraj gradivo
Navadno besedilo
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
Kopiraj citat
Objavi na:
Gradivo je del revije
Naslov:
IEEE transactions on instrumentation and measurement
Skrajšan naslov:
IEEE trans. instrum. meas.
Založnik:
Institute of Electrical and Electronics Engineers.
ISSN:
0018-9456
COBISS.SI-ID:
2861071
Licence
Licenca:
CC BY-NC-ND 4.0, Creative Commons Priznanje avtorstva-Nekomercialno-Brez predelav 4.0 Mednarodna
Povezava:
http://creativecommons.org/licenses/by-nc-nd/4.0/deed.sl
Opis:
Najbolj omejujoča licenca Creative Commons. Uporabniki lahko prenesejo in delijo delo v nekomercialne namene in ga ne smejo uporabiti za nobene druge namene.
Sekundarni jezik
Jezik:
Slovenski jezik
Ključne besede:
miniaturni roboti
,
mikrokrmilniki
,
čas preleta
,
konvolucijske nevronske mreže
,
binarna klasifikacija
,
ultra-nizka resolucija
,
nizka moč
,
TinyML
Podobna dela
Podobna dela v RUL:
Podobna dela v drugih slovenskih zbirkah:
Nazaj