izpis_h1_title_alt

Sinteza in vrednotenje endiaminskih in enaminonskih asimetričnih bifunkcionalnih organokatalizatorjev na osnovi privilegiranih kiralnih skeletov
ID Ciber, Luka (Avtor), ID Grošelj, Uroš (Mentor) Več o mentorju... Povezava se odpre v novem oknu

.pdfPDF - Predstavitvena datoteka, prenos (10,09 MB)
MD5: C9C639CC3EADBFF30D5A2090F9B013BB

Izvleček
Asimetrična organokataliza, poleg katalize s kovinami prehoda in encimske katalize, predstavlja tretji steber asimetrične katalize. Organokatalizatorji aktivirajo izhodne substrate bodisi s kovalentnimi ali nekovalentnimi interakcijami. Nekovalentni organokatalizatorji delujejo na principu šibkih medmolekulskih interakcij, kot so vodikove vezi. V doktorski disertaciji smo se ukvarjali s sintezo in uporabo nekovalentnih bifunkcionalnih organokatalizatorjev, študijem mehanizmov delovanja le-teh v izbranih organokataliziranih reakcijah in testiranjem potencialnih heterocikličnih substratov v novih organokataliziranih pretvorbah. V prvem delu smo pripravili nove bifunkcionalne nekovalentne organokatalizatorje na osnovi enaminov in dienaminov (benzendiaminov) kot donorjev vodikovih vezi s (S)-kininskim kiralnim ogrodjem (24 sintetiziranih katalizatorjev). Pripravljene katalizatorje smo testirali na modelni reakciji Michaelove adicije acetilacetona na trans-β-nitrostiren. Pripravljeni novi organokatalizatorji so pokazali slabše katalitske lastnosti (do 72 % ee) v primerjavi z že uveljavljenimi sorodnimi organokatalizatorji skvaramidnega ali sečninskega tipa. V nadaljevanju smo poskusili sintetizirati petčlenske analoge skvaramidnih organokatalizatorjev na osnovi maleimidov kot dvojnih donorjev vodikovih vezi. Priprava popolnih analogov nam ni uspela, vendar smo uspešno pripravili maleimidne organokatalizatorje z enojnim donorjem vodikove vezi in zaščitene maleimidne organokatalizatorje. Tekom priprave maleimidnih organokatalizatorjev smo dodatno preučili kemijsko reaktivnost maleimidov. V drugem delu smo študirali delovanje že uveljavljenih bifunkcionalnih nekovalentnih asimetričnih organokatalizatorjev na osnovi skvaramida v dveh enantioselektivnih pretvorbah. Prva reakcija, ki smo jo preučevali, je bila Michaelova adicija malononitrila na arilidenske derivate pirolin-4-onov, ki se je končala s reakcijo v dihidropirano[3,2-b]pirol. Druga reakcija je bila organokatalizirana Michaelova adicija tetramskih in tetronskih kislin na trans-β-nitrostiren. Z eksperimentalnimi podatki in DFT izračuni smo predpostavili mehanizem organokataliziranih reakcij in pojasnili izvor enantioselektivnosti. V primeru adicije malononitrila na arilidenpirolin-4-on smo dodatno preučevali vpliv topila in konfiguracije arilidenpirolin-4-ona na enantioselektivnost reakcij. Izkazalo se je, da lahko enantioselektivnost reakcije kontroliramo tako s konfiguracijo Michaelovega akceptorja kot z izbiro topila. Tako smo ob uporabi enega samega organokatalizatorja s spremembo topila iz metanola v diklorometan uspeli spremeniti enantioselektivnost reakcije. Spremembo enantioselektivnosti reakcije smo razložili s spremembo reaktivne konformacije organokatalizatorja v izbranem topilu. V tretjem delu smo iz (+)-10-kafrasulfonske kisline pripravili nove bifunkcionalne organokatalizatorje faznega prenosa. S kiralnim ogrodjem kafre smo nadomestili dobro uveljavljena kiralna ogrodja na osnovi derivatov kinuklidina, trans-1,2-diaminocikloheksana in α-aminokislin. Pripravili smo različne bifunkcionalne organokatalizatorje faznega prenosa na osnovi kafre s tiosečninskim in skvaramidnim donorjem vodikove vezi ter jodidnim in trifluoroacetatnim protiionom (10 katalizatorjev). Pripravljene organokatalizatorje faznega prenosa smo testirali v različnih modelnih reakcijah, kot so elektrofilne funkcionalizacije cikličnega β-keto estra in alkiliranja iminskega derivata glicina z metil akrilatom. Pripravljeni organokatalizatorji faznega prenosa niso zagotavljali visoke enantioselektivnosti (do 29 % ee), so pa reakcije v večini primerov potekle s popolno konverzijo. V zadnjem delu smo pripravili različne heterociklične sisteme, ki smo jih testirali kot substrate v (asimetričnih) organokataliziranih reakcijah. Pripravili smo bromirane piridonske in kinolonske heterocikle. Pripravljene heterocikle smo preizkusili v kaskadni organokatalizirani reakciji ciklopropanacije s pirolonskimi in pirazolonskimi Michaelovimi akceptorji. Pri tem so nastali strukturno raznoliki bispirociklični sistemi. Diastereoselektivnost reakcij je bila odvisna od uporabljenega katalizatorja oziroma od uporabljene baze. Enantioselektivnosti nam zaradi različnih zmesi diastereomerov ni uspelo določiti.

Jezik:Slovenski jezik
Ključne besede:-
Vrsta gradiva:Doktorsko delo/naloga
Tipologija:2.08 - Doktorska disertacija
Organizacija:FKKT - Fakulteta za kemijo in kemijsko tehnologijo
Leto izida:2023
PID:20.500.12556/RUL-150995 Povezava se odpre v novem oknu
COBISS.SI-ID:169266947 Povezava se odpre v novem oknu
Datum objave v RUL:26.09.2023
Število ogledov:247
Število prenosov:59
Metapodatki:XML RDF-CHPDL DC-XML DC-RDF
:
Kopiraj citat
Objavi na:Bookmark and Share

Sekundarni jezik

Jezik:Angleški jezik
Naslov:Synthesis and evaluation of endiamine and enaminone asymmetric bifunctional organocatalysts based on privileged chiral scaffolds
Izvleček:
Asymmetric organocatalysis represents the third pillar of asymmetric catalysis, alongside transition metal catalysis and enzyme catalysis. Organocatalysts activate the starting substrates by either covalent or non-covalent interactions. Non-covalent organocatalysts work on the principle of weak intermolecular interactions such as hydrogen bonds. In this PhD thesis we have been working on the synthesis and application of non-covalent bifunctional organocatalysts, studying their mechanisms of action in selected organocatalysed reactions and testing potential heterocyclic substrates in new organocatalysed transformations. In the first part, new bifunctional non-covalent organocatalysts based on enamines and dienamines (benzenediamines) as hydrogen bond donors with (S)-quinine chiral framework were prepared (24 catalysts synthesised). The prepared catalysts were tested on a model reaction of Michael addition of acetylacetone to trans-β-nitrostyrene. The prepared new organocatalysts showed inferior catalytic properties (up to 72 % ee) compared to the already established related organocatalysts of squaramide or urea type. In the following, attempts were made to synthesise five-membered analogues of squaramide organocatalysts based on maleimides as double hydrogen bond donors. We were not successful in preparing complete analogues, but we successfully prepared maleimide organocatalysts with a single hydrogen bond donor and protected maleimide organocatalysts. During the preparation of the maleimide organocatalysts, the chemical reactivity of the maleimides was further investigated. In the second part, we studied the performance of established bifunctional non-covalent asymmetric squaramide-based organocatalysts in two enantioselective conversions. The first reaction studied was the Michael addition of malononitrile to arylidene pyrrolin-4-ones, which resulted in heteroannulation to dihydropyrano[3,2-b]pyrrole. The second reaction was the organocatalysed Michael addition of tetramic and tetronic acids to trans-β-nitrostyrene. The mechanism of the organocatalysed reactions was postulated using experimental data and DFT calculations and the origin of the enantioselectivity was elucidated. In the case of the addition of malononitrile to arylidenepyrroline-4-one, the influence of the solvent and the configuration of the arylidenepyrroline-4-one on the enantioselectivity of the reactions was further investigated. It turns out that the enantioselectivity of the reaction can be controlled both by the configuration of the Michael acceptor and by the choice of the solvent. Thus, using a single organocatalyst, we were able to reverse the enantioselectivity of the reaction by changing the solvent from methanol to dichloromethane. The change in the enantioselectivity of the reaction was explained by a change in the reactive conformation of the organocatalyst in the chosen solvent. In the third part, new bifunctional phase transfer organocatalysts were prepared from (+)-10-camphorsulfonic acid. The chiral framework of camphor was used to replace the well-established chiral frameworks based on derivatives of quinuclidine, trans-1,2-cyclohexanediamine and α-amino acids. Various bifunctional camphor-based phase transfer organocatalysts with thiosuccinic and squaramidic hydrogen bond donors and iodide and trifluoroacetate counterions were prepared (10 catalysts). The prepared phase transfer organocatalysts were tested in various model reactions such as electrophilic functionalisations of cyclic β-keto ester and alkylation of an imine derivative of glycine with methyl acrylate. The prepared phase transfer organocatalysts did not provide high enantioselectivities (up to 29 % ee), but the reactions proceeded in most cases with complete conversion. In the last part of the work, different heterocyclic systems were prepared and tested as substrates in (asymmetric) organocatalysed reactions. Brominated pyridone and quinolone heterocycles were prepared. The prepared heterocycles were tested in a cascade organocatalysed cyclopropanation reaction with pyrrolon and pyrazolone Michael acceptors. This afforded 3D-rich bispyrocyclic systems. The diastereoselectivity of the reactions depended on the catalyst and base used, respectively. We were not able to determine the enantioselectivity due to the complex mixtures of diastereomers.

Ključne besede:-

Podobna dela

Podobna dela v RUL:
Podobna dela v drugih slovenskih zbirkah:

Nazaj