izpis_h1_title_alt

Development and applications of electrochemical sensors based on graphene derivatives
ID Gričar, Ema (Avtor), ID Kolar, Mitja (Mentor) Več o mentorju... Povezava se odpre v novem oknu, ID Genorio, Boštjan (Komentor)

.pdfPDF - Predstavitvena datoteka, prenos (5,03 MB)
MD5: 23CCEA1B1EF87F48B14087159D76E935

Izvleček
Electrochemical sensors have attracted a considerable amount of attention in recent years because they provide an appealing platform for detecting a vast plethora of target analytes. In general, they are known as devices with high selectivity and sensitivity, low limits of detection, cost-effective fabrication, ease of customization, possibility for sensing target analytes in complex sample matrices, and facile operation. They have acquired an important position in the broader fields of analytical chemistry, medicine, pharmaceutical analysis, food analysis, environmental science, chemical industry, and others. Since some of these sensors have become commercially available, they have also gained an important role in everyday life. With the development of various nanomaterials, the limits of detection and sensitivity of electrochemical sensors have been pushed further than ever before. In the scope of this work, graphene-based nanomaterials were synthesized according to an improved Hummer method, characterized, and used in the development of electrochemical sensors for H2O2, glucose, and human folate receptor alpha (FOLR-1). It was shown that the use of such materials to modify the electrode surface positively influenced the electrochemical properties of the electrode surface while also improving the sensitivity of the developed sensors by increasing the surface area of the electrode and enhancing the charge transfer. The developed non-enzymatic amperometric H2O2 sensor was based on a carbon paste electrode (CPE), modified with 1:1 MnO2 and nitrogen doped heat treated graphene oxide nanoribbons (N-htGONR). The sensor exhibited a wide linear range (1 – 300 µM), low LOD (0.08 µM), excellent reproducibility, high sensitivity, and satisfactory lifetime. An interference study was also performed, which showed that the sensor is suitable for use in real samples. The sensor was also successfully applied to detect the target analyte in pharmaceutical and biological real samples. Finally, the sensing platform was successfully transferred from the bulky classical three-electrode system to a miniaturized screen-printed three-electrode system, which will be used for further applications. An amperometric glucose sensor was also developed by utilizing the enzymatic oxidation of glucose by glucose oxidase (GOX) and a subsequent reaction of the by-product H2O2 at the electrode surface. Screen-printed carbon electrodes were modified with N-htGONR, MnO2, and GOX in order to obtain such a sensor. The device exhibited a wide linear range (0.05 – 5.0 mM), low LOD (0.008 mM), and favourable lifetime and reproducibility. Interference studies showed that the sensor is selective and can thus be used to detect glucose in a real matrix. Glucose was detected in spiked beer samples with accuracy of 93.5 – 103.5%, confirming the suitability of the sensor for real applications. The FOLR-1 sensor was developed by immobilizing a folic acid derivative on the electrode surface of an htGONR-modified gold screen-printed electrode. Three folic acid derivatives were synthesized and then used to modify the electrode surface. The electrodes modified with a folic acid derivative (FAd3) exhibited the highest sensitivity towards the target analyte. The operation of the sensor is based on the adsorption of FOLR-1 onto the electrode surface (binding of the substrate), blocking reaction sites for an electrochemical reaction of an electrochemical probe ([Fe(CN)6]3-/4-). The developed sensor exhibited a low LOD (53 pM) and an appropriate linear range (up to 1 nM) for potential final applications in human blood or serum. In the scope of the research work for this dissertation, graphene-based nanomaterials were shown to improve the electrochemical properties of bare electrodes, which is crucially important in the development of an electrochemical sensor. The sensors for H2O2 and glucose were developed using specific and novel material combinations (N-htGONR with MnO2), and their properties were significantly improved compared to similar sensors from previously published works. The FOLR-1 sensor was developed using a new approach in which folic acid derivatives with desired structural segments were first synthesized and used to modify the electrode surfaces.

Jezik:Angleški jezik
Ključne besede:-
Vrsta gradiva:Doktorsko delo/naloga
Tipologija:2.08 - Doktorska disertacija
Organizacija:FKKT - Fakulteta za kemijo in kemijsko tehnologijo
Leto izida:2023
PID:20.500.12556/RUL-150989 Povezava se odpre v novem oknu
COBISS.SI-ID:169056771 Povezava se odpre v novem oknu
Datum objave v RUL:26.09.2023
Število ogledov:467
Število prenosov:115
Metapodatki:XML DC-XML DC-RDF
:
Kopiraj citat
Objavi na:Bookmark and Share

Sekundarni jezik

Jezik:Slovenski jezik
Naslov:Razvoj in uporaba elektrokemijskih senzorjev na osnovi grafenskih derivatov
Izvleček:
Elektrokemijski senzorji so v zadnjih letih pritegnili veliko pozornosti v analizni kemiji, saj ponujajo primerno izhodišče za zaznavanje različnih tarčnih analitov. Na splošno elektrokemijske senzorje odlikujejo visoki selektivnost in občutljivost, nizka meja zaznave, relativno nizka cena, enostavna prilagoditev za meritve v kompleksnih vzorcih in enostavno delovanje. Njihova uporaba na različnih področjih kaže, da so pridobili pomemben položaj tako v znanosti kot v vsakdanjem življenju. Z razvojem različnih nanomaterialov pa je z elektrokemijskimi senzorji mogoče doseči še nižje meje zaznave in višjo občutljivost. Tekom raziskovalnega dela so bili po izboljšani Hummerjevi metodi sintetizirani in nato okarakterizirani različni grafenski nanomateriali. Nato so bili kot modifikacije elektrodne površine vključeni v razvoj senzorjev za H2O2, glukozo in folatni receptor (FOLR-1). Izkazalo se je, da je z uporabo tovrstnih materialov za modifikacijo elektrodne površine možno doseči izboljšano občutljivost, in sicer zaradi povečanja specifične površine elektrode in pospešenega prenosa naboja. Elektrokemijski senzor za H2O2, razvit v okviru te študije, je temeljil na elektrodi iz ogljikove paste (CPE), modificirani z 1:1 MnO2 in z N-dopiranimi piroliziranimi nanotrakovi grafen oksida (N-htGONR). Senzor se je izkazal s širokim linearnim območjem (1 - 300 µM), nizko mejo zaznave (0,08 µM), odlično ponovljivostjo, visoko občutljivostjo in dovolj dolgo življenjsko dobo. Izvedena je bila tudi interferenčna študija, ki je pokazala, da je senzor primeren za uporabo na realnih vzorcih. Uporaba senzorja je bila nato uspešno demonstrirana na realnih farmacevtskih in bioloških vzorcih. Sledila je še miniaturizacija senzorja za potrebe nadaljnjih aplikacij, in sicer z uporabo ogljikovih sitotiskanih elektrod. Razvit je bil tudi encimski senzor za glukozo, ki je temeljil na modificirani ogljikovi sitotiskani elektrodi. Za določanje glukoze je služila encimska oksidacija glukoze z glukoza oksidazo (GOX), katere stranski produkt je H2O2, ki je nato reagiral na elektrodi. Delovna elektroda senzorja je bila torej modificirana z N-htGONR, MnO2 ter GOX. Senzor se je izkazal s širokim linearnim območjem (0,05 – 5,0 mM), nizko mejo zaznave (0,008 mM) ter ugodno življenjsko dobo in ponovljivostjo. Interferenčna študija je tudi v tem primeru pokazala, da je senzor primeren za uporabo v realnih matricah. Tako je bil testiran njegov odziv na vzorcih piva s standardnimi dodatki glukoze in izkazalo se je, da matrica piva na detekcijo glukoze ne vpliva bistveno (točnost je bila 93.5 – 103.5 %). Senzor je torej primeren za nadaljnje aplikacije na realnih vzorcih. Senzor za FOLR-1 je bil razvit s pomočjo imobilizacije derivata folne kisline na površini zlate sitotiskane elektrode, modificirane s htGONR. Sintetizirani so bili trije derivati folne kisline in uporabljeni za modifikacijo elektrodnih površin. Elektrode, modificirane z derivatom folne kisline FAd3, so se izkazale z najvišjo občutljivostjo na tarčni analit izmed vseh preučevanih derivatov. Delovanje senzorja temelji na adsorpciji FOLR-1 na površino elektrode (vezava na substrat), s čimer blokira mesta za elektrokemijsko reakcijo [Fe(CN)6]3-/4-. Razviti senzor je nadalje pokazal nizko mejo zaznave (53 pM) ter linearno območje(do 1 nM), primerno za ciljne študije na realnih vzorcih človeške krvi ali seruma. V okviru raziskovalnega dela za doktorsko disertacijo sem pokazala, da modifikacije elektrodnih površin z grafenskimi nanomateriali pripomorejo k izboljšanju elektrokemijskih karakteristik elektrod, kar je bistvenega pomena pri razvoju elektrokemijskih senzorjev. Senzorja za H2O2 in glukozo sta z uporabo specifične kombinacije materialov izkazovala bistveno izboljšavo parametrov v primerjavi s primerljivimi senzorji iz literature. Pri razvoju senzorja za FOLR-1 pa sem uspešno uporabila nov pristop s sintezo ter uporabo derivatov folne kisline kot elektrodnih modifikacij.

Ključne besede:-

Podobna dela

Podobna dela v RUL:
Podobna dela v drugih slovenskih zbirkah:

Nazaj