Loading [MathJax]/jax/output/HTML-CSS/jax.js

Podrobno

Eulerjev problem 36 častnikov : delo diplomskega seminarja
ID Kranjec, Katja (Avtor), ID Vavpetič, Aleš (Mentor) Več o mentorju... Povezava se odpre v novem oknu

.pdfPDF - Predstavitvena datoteka, prenos (742,38 KB)
MD5: 4AE22631D3338AB38C4CED3E98CA9391

Izvleček
Latinski kvadrat reda n je tabela velikosti n×n, sestavljena iz elementov množice moči n, v kateri je vsak od elementov zastopan v vsaki vrstici in v vsakem stolpcu. Dva latinska kvadrata reda n sta ortogonalna, če njuna superpozicija tvori same različne urejene pare. Nastalemu kvadratu rečemo grško-latinski kvadrat reda n. Eulerjev problem 36 častnikov, ki se sprašuje, ali je možno razporediti 36 častnikov iz šestih različnih regimentov in šestih različnih činov, v formacijo 6×6, tako da je v vsaki vrsti in vsaki koloni zastopan vsak regiment in vsak čin, je potem enak vprašanju obstoja grško-latinskega kvadrata reda šest. Tega lahko prevedemo v vprašanje obstoja transverzalnega načrta TD(4,6), za katerega lažje dokažemo, da ne obstaja. Grško-latinske kvadrate lihih redov znamo enostavno konstruirati, prav tako poznamo kvadrata reda štiri in osem. Dejstvo, da iz dveh grško-latinskih kvadratov redov n1 in n2 dobimo grško-latinski kvadrat reda n1×n2, pa nam pomaga konstruirati še kvadrate višjih redov oblike n2(mod4). Euler je domneval, da grško-latinski kvadrati preostalih redov ne obstajajo, vendar je bila njegova domneva ovržena skoraj dvesto let kasneje. Dva načina konstrukcije takih kvadratov sta s pomočjo ortogonalnih tabel in Wilsonove konstrukcije.

Jezik:Slovenski jezik
Ključne besede:ortogonalni latinski kvadrati, grško-latinski kvadrati, ortogonalne tabele, transverzalni načrti
Vrsta gradiva:Delo diplomskega seminarja/zaključno seminarsko delo/naloga
Tipologija:2.11 - Diplomsko delo
Organizacija:FMF - Fakulteta za matematiko in fiziko
Leto izida:2023
PID:20.500.12556/RUL-150831 Povezava se odpre v novem oknu
UDK:519.1
COBISS.SI-ID:165831171 Povezava se odpre v novem oknu
Datum objave v RUL:24.09.2023
Število ogledov:1459
Število prenosov:77
Metapodatki:XML DC-XML DC-RDF
:
KRANJEC, Katja, 2023, Eulerjev problem 36 častnikov : delo diplomskega seminarja [na spletu]. Diplomsko delo. [Dostopano 26 april 2025]. Pridobljeno s: https://repozitorij.uni-lj.si/IzpisGradiva.php?lang=slv&id=150831
Kopiraj citat
Objavi na:Bookmark and Share

Sekundarni jezik

Jezik:Angleški jezik
Naslov:Euler’s 36 Officers Problem
Izvleček:
A Latin square of order n is an n×n array of elements from a set of size n in which each element occurs in every row and every column. Two Latin squares of order n are orthogonal if their superposition yields unique ordered pairs. The resulting square is then called a Graeco-Latin square of order n. Euler’s 36 Officers Problem which poses a question if it is possible to arrange 36 officers of six different regiments and of six different ranks in a formation 6×6 where each row and each file contains one officer of each regiment and one of each rank, is equal to the question of existence of Graeco-Latin square of order six. In design theory this question translates to the question of existence of a transversal design TD(4,6) the non-existence of which is easier to prove. Graeco-Latin squares of odd orders are easy to construct as well as squares of orders four and eight. The fact that a Graeco-Latin square of order n1×n2 can be constructed from two Graeco-Latin squares of orders n1 and n2 helps us construct squares of higher orders n where n2(mod4). Euler conjectured that there exist no Graeco-Latin squares of other orders which was disproven almost two hundred years later. Two ways of constructing such squares are using orthogonal tables and Wilson’s construction.

Ključne besede:orthogonal latin squares, Graeco-Latin squares, orthogonal arrays, transversal designs

Podobna dela

Podobna dela v RUL:
  1. Ozaveščenost staršev o nudenju prve pomoči predšolskemu otroku
  2. Znanje prve pomoči pri gasilcih in certificiranih prvih posredovalcih na območju Kamnika
  3. Ocena znanja o temeljnih postopkih oživljanja s strani članov koronarnega kluba
  4. Temeljni postopki oživljanja in uporaba avtomatskega zunanjega defibrilatorja pri otrocih
  5. Prvi posredovalci v sistemu predbolnišnične nujne medicinske pomoči v Sloveniji
Podobna dela v drugih slovenskih zbirkah:
  1. Znanje temeljnih postopkov oživljanja otroka pri zaposlenih v vrtcu
  2. Projekt Prva medicinska pomoč

Nazaj