izpis_h1_title_alt

Karakteristični razredi in Bottov izrek o foliacijah : magistrsko delo
ID Maier, Andraž (Avtor), ID Mrčun, Janez (Mentor) Več o mentorju... Povezava se odpre v novem oknu

.pdfPDF - Predstavitvena datoteka, prenos (1,76 MB)
MD5: 1D5C7793A9BA767066B3AB3D1742C6E4

Izvleček
V delu opišemo teorijo karakterističnih razredov vektorskih svežnjev in jo uporabimo za formulacijo in dokaz Bottovega izreka o foliacijah. Natančno predstavimo teorijo realnih in kompleksnih vektorskih svežnjev, ki postavi temelje celotnega dela. Poseben poudarek namenimo konstrukcijam, metriki in kratkim eksaktnim zaporedjem vektorskih svežnjev. Definiramo povezavo in ukrivljenost na svežnjih, opišemo njune lastnosti in predstavimo konstrukcije povezav na vektorskih svežnjih. Naslednji orodji, ki ju v delu predstavimo, sta de Rhamova kohomologija in njena homotopska invarianca. Ker je Bottov izrek izrek o foliacijah, se dotaknemo tudi teorije foliacij, s posebnim poudarkom na obravnavi podsvežnja tangentnega svežnja z diferencialnimi formami. Pred definicijo karakterističnih razredov pogledamo še teorijo invariantnih polinomov in z njimi povezanih simetričnih polinomov. Nato s pomočjo razvitega orodja prek Chern-Weilovega homomorfizma definiramo realne in kompleksne karakteristične razrede. Posebej si pogledamo Pontrjaginove in Chernove razrede ter njihove lastnosti, za konec pa predstavimo še Bottov izrek in njegov dokaz.

Jezik:Slovenski jezik
Ključne besede:vektorski sveženj, de Rhamova kohomologija, foliacija, povezava, ukrivljenost, simetrični polinom, invariantni polinom, Chern-Weilov homomorfizem, karakteristični razred, Pontrjaginov razred, Chernov razred, Bottov izrek
Vrsta gradiva:Magistrsko delo/naloga
Tipologija:2.09 - Magistrsko delo
Organizacija:FMF - Fakulteta za matematiko in fiziko
Leto izida:2023
PID:20.500.12556/RUL-150236 Povezava se odpre v novem oknu
UDK:512
COBISS.SI-ID:164240131 Povezava se odpre v novem oknu
Datum objave v RUL:15.09.2023
Število ogledov:936
Število prenosov:128
Metapodatki:XML DC-XML DC-RDF
:
Kopiraj citat
Objavi na:Bookmark and Share

Sekundarni jezik

Jezik:Angleški jezik
Naslov:Characteristic classes and Bott vanishing theorem
Izvleček:
In the work, we describe the theory of characteristic classes of vector bundles and apply it to formulate and prove Bott vanishing theorem. We provide a detailed presentation of the theory of real and complex vector bundles, which lays the foundation for the entire work. Special emphasis is placed on constructions, metrics, and short exact sequences of vector bundles. We define connection and curvature on bundles, describe their properties, and present constructions of connections on vector bundles. Next tool that we present in this work is de Rham cohomology and its homotopy invariance. As Bott's theorem deals with foliations, we briefly examine the theory of foliations with a special focus on studying the subbundles of the tangent bundle using differential forms. Before defining characteristic classes, we also explore the theory of invariant polynomials and their connection to symmetric polynomials. Then, using the developed tools and the Chern-Weil homomorphism, we define real and complex characteristic classes. We take a special look at the Pontryagin and Chern classes and their properties, and finally we present Bott's theorem and its proof.

Ključne besede:vector bundle, de Rham cohomology, foliation, connection, curvature, symmetric polynomial, invariant polynomial, Chern-Weil homomorphism, characteristic class, Pontryagin class, Chern class, Bott theorem

Podobna dela

Podobna dela v RUL:
Podobna dela v drugih slovenskih zbirkah:

Nazaj