Graphene, despite its one-atom thickness, counts as one of the strongest materials. In addition, it is considered extremely conductive, for both heat and electricity. The applications of graphene are diverse and span various fields such as nanotechnology bioengineering, and energy storage. Graphene can be synthesized in various ways, among which mechanical exfoliation, epitaxial growth on silicon carbide, chemical reduction of graphene oxide, chemical vapor deposition and flash Joule heating (FJH) stand out. This diversity of synthesis approaches allows flexibility in obtaining graphene for use in variety of research applications.
In my thesis, I will discuss the FJH process of carbon samples, more specifically a sample called Ketjenblack EC-300J, which contained various nickel contents. The purpose of the experimental work was to optimize the system variables to obtain turbostratic graphene of higher quality on a larger scale.
The product was then characterized using two techniques, using scanning electron microscopy (SEM) and Raman spectroscopy. The techniques showed us the morphology and composition of the product.
|