Your browser does not allow JavaScript!
JavaScript is necessary for the proper functioning of this website. Please enable JavaScript or use a modern browser.
Open Science Slovenia
Open Science
DiKUL
slv
|
eng
Search
Browse
New in RUL
About RUL
In numbers
Help
Sign in
On $p$-Laplacian Kirchhoff-Schrödinger-Poisson type systems with critical growth on the Heisenberg group
ID
Bai, Shujie
(
Author
),
ID
Song, Yueqiang
(
Author
),
ID
Repovš, Dušan
(
Author
)
PDF - Presentation file,
Download
(545,05 KB)
MD5: 4EDF74ACB8E05BFDB5F5E96C24536D6C
URL - Source URL, Visit
http://www.aimspress.com/article/doi/10.3934/era.2023292
Image galllery
Abstract
In this article, we investigate the Kirchhoff-Schrödinger-Poisson type systems on the Heisenberg group of the following form: $\begin{cases} {-(a+b\int_{\Omega}|\nabla_{H} u|^{p}d\xi)\Delta_{H, p}u-\mu\phi |u|^{p-2}u} = \lambda |u|^{q-2}u+|u|^{Q^{\ast}-2}u & \mbox{in}\ \Omega, \\ -\Delta_{H}\phi = |u|^{p} & \mbox{in}\ \Omega, \\ u = \phi = 0 & \mbox{on}\ \partial\Omega, \end{cases}$ where $a, b$ are positive real numbers, $\Omega\subset \mathbb{H}^N$ is a bounded region with smooth boundary, $1 < p < Q$, $Q = 2N + 2$ is the homogeneous dimension of the Heisenberg group $\mathbb{H}^N$, $Q^{\ast} = \frac{pQ}{Q-p}$, $q\in(2p, Q^{\ast})$ and $\Delta_{H, p}u = \mbox{div}(|\nabla_{H} u|^{p-2}\nabla_{H} u)$ is the $p$-horizontal Laplacian. Under some appropriate conditions for the parameters $\mu$ and $\lambda$, we establish existence and multiplicity results for the system above. To some extent, we generalize the results of An and Liu (Israel J. Math., 2020) and Liu et al. (Adv. Nonlinear Anal., 2022).
Language:
English
Keywords:
Kirchhoff-Schrödinger-Poisson systems
,
Heisenberg groups
,
p-Laplacian operators
,
critical growth
,
concentration-compactness principle
Work type:
Article
Typology:
1.01 - Original Scientific Article
Organization:
PEF - Faculty of Education
FMF - Faculty of Mathematics and Physics
Publication status:
Published
Publication version:
Version of Record
Year:
2023
Number of pages:
Str. 5749-5765
Numbering:
Vol. 31, iss. 9
PID:
20.500.12556/RUL-149116
UDC:
517.956.2
ISSN on article:
2688-1594
DOI:
10.3934/era.2023292
COBISS.SI-ID:
163051011
Publication date in RUL:
04.09.2023
Views:
686
Downloads:
69
Metadata:
Cite this work
Plain text
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
Copy citation
Share:
Record is a part of a journal
Title:
Electronic research archive
Shortened title:
Electron. res. arch.
Publisher:
American institute of mathematical sciences
ISSN:
2688-1594
COBISS.SI-ID:
20165635
Licences
License:
CC BY 4.0, Creative Commons Attribution 4.0 International
Link:
http://creativecommons.org/licenses/by/4.0/
Description:
This is the standard Creative Commons license that gives others maximum freedom to do what they want with the work as long as they credit the author.
Projects
Funder:
Other - Other funder or multiple funders
Funding programme:
National Natural Science Foundation of China
Project number:
12001061
Funder:
Other - Other funder or multiple funders
Funding programme:
China, Jilin Province, Science and Technology Development Plan
Project number:
20230101287JC
Funder:
Other - Other funder or multiple funders
Funding programme:
China, Jilin Province, Innovation and Entrepreneurship Talent Funding
Project number:
2023QN21
Funder:
ARRS - Slovenian Research Agency
Project number:
P1-0292
Name:
Topologija in njena uporaba
Funder:
ARRS - Slovenian Research Agency
Project number:
J1-4031
Name:
Računalniška knjižnica za zavozlane strukture in aplikacije
Funder:
ARRS - Slovenian Research Agency
Project number:
J1-4001
Name:
Izbrani problemi iz uporabne in računske topologije
Funder:
ARRS - Slovenian Research Agency
Project number:
N1-0278
Name:
Biološka koda vozlov - identifikacija vzorcev vozlanja v biomolekulah z uporabo umetne inteligence
Funder:
ARRS - Slovenian Research Agency
Project number:
N1-0114
Name:
Algebrajski odtisi geometrijskih značilnosti v homologiji
Funder:
ARRS - Slovenian Research Agency
Project number:
N1-0083
Name:
Forsing, fuzija in kombinatorika odprtih pokritij
Similar documents
Similar works from RUL:
Similar works from other Slovenian collections:
Back