izpis_h1_title_alt

On $p$-Laplacian Kirchhoff-Schrödinger-Poisson type systems with critical growth on the Heisenberg group
ID Bai, Shujie (Author), ID Song, Yueqiang (Author), ID Repovš, Dušan (Author)

.pdfPDF - Presentation file, Download (545,05 KB)
MD5: 4EDF74ACB8E05BFDB5F5E96C24536D6C
URLURL - Source URL, Visit http://www.aimspress.com/article/doi/10.3934/era.2023292 This link opens in a new window

Abstract
In this article, we investigate the Kirchhoff-Schrödinger-Poisson type systems on the Heisenberg group of the following form: $\begin{cases} {-(a+b\int_{\Omega}|\nabla_{H} u|^{p}d\xi)\Delta_{H, p}u-\mu\phi |u|^{p-2}u} = \lambda |u|^{q-2}u+|u|^{Q^{\ast}-2}u & \mbox{in}\ \Omega, \\ -\Delta_{H}\phi = |u|^{p} & \mbox{in}\ \Omega, \\ u = \phi = 0 & \mbox{on}\ \partial\Omega, \end{cases}$ where $a, b$ are positive real numbers, $\Omega\subset \mathbb{H}^N$ is a bounded region with smooth boundary, $1 < p < Q$, $Q = 2N + 2$ is the homogeneous dimension of the Heisenberg group $\mathbb{H}^N$, $Q^{\ast} = \frac{pQ}{Q-p}$, $q\in(2p, Q^{\ast})$ and $\Delta_{H, p}u = \mbox{div}(|\nabla_{H} u|^{p-2}\nabla_{H} u)$ is the $p$-horizontal Laplacian. Under some appropriate conditions for the parameters $\mu$ and $\lambda$, we establish existence and multiplicity results for the system above. To some extent, we generalize the results of An and Liu (Israel J. Math., 2020) and Liu et al. (Adv. Nonlinear Anal., 2022).

Language:English
Keywords:Kirchhoff-Schrödinger-Poisson systems, Heisenberg groups, p-Laplacian operators, critical growth, concentration-compactness principle
Work type:Article
Typology:1.01 - Original Scientific Article
Organization:PEF - Faculty of Education
FMF - Faculty of Mathematics and Physics
Publication status:Published
Publication version:Version of Record
Year:2023
Number of pages:Str. 5749-5765
Numbering:Vol. 31, iss. 9
PID:20.500.12556/RUL-149116 This link opens in a new window
UDC:517.956.2
ISSN on article:2688-1594
DOI:10.3934/era.2023292 This link opens in a new window
COBISS.SI-ID:163051011 This link opens in a new window
Publication date in RUL:04.09.2023
Views:673
Downloads:67
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Record is a part of a journal

Title:Electronic research archive
Shortened title:Electron. res. arch.
Publisher:American institute of mathematical sciences
ISSN:2688-1594
COBISS.SI-ID:20165635 This link opens in a new window

Licences

License:CC BY 4.0, Creative Commons Attribution 4.0 International
Link:http://creativecommons.org/licenses/by/4.0/
Description:This is the standard Creative Commons license that gives others maximum freedom to do what they want with the work as long as they credit the author.

Projects

Funder:Other - Other funder or multiple funders
Funding programme:National Natural Science Foundation of China
Project number:12001061

Funder:Other - Other funder or multiple funders
Funding programme:China, Jilin Province, Science and Technology Development Plan
Project number:20230101287JC

Funder:Other - Other funder or multiple funders
Funding programme:China, Jilin Province, Innovation and Entrepreneurship Talent Funding
Project number:2023QN21

Funder:ARRS - Slovenian Research Agency
Project number:P1-0292
Name:Topologija in njena uporaba

Funder:ARRS - Slovenian Research Agency
Project number:J1-4031
Name:Računalniška knjižnica za zavozlane strukture in aplikacije

Funder:ARRS - Slovenian Research Agency
Project number:J1-4001
Name:Izbrani problemi iz uporabne in računske topologije

Funder:ARRS - Slovenian Research Agency
Project number:N1-0278
Name:Biološka koda vozlov - identifikacija vzorcev vozlanja v biomolekulah z uporabo umetne inteligence

Funder:ARRS - Slovenian Research Agency
Project number:N1-0114
Name:Algebrajski odtisi geometrijskih značilnosti v homologiji

Funder:ARRS - Slovenian Research Agency
Project number:N1-0083
Name:Forsing, fuzija in kombinatorika odprtih pokritij

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back