izpis_h1_title_alt

Matematično ozadje Pyraminxa : magistrsko delo
ID Urbančič, Katarina (Author), ID Starčič, Tadej (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (6,44 MB)
MD5: 2C00EDC891FBE12E4AD32328D717CF1B

Abstract
V magistrskem delu bomo opisali matematično ozadje Pyraminxa. To je mehanska uganka v obliki tetraedra, sestavljena iz več kosov, ki jih je mogoče ustrezno premikati. Eden od izzivov, s katerim se srečamo pri Pyraminxu, je vprašanje, kako vrniti uganko v svoje izvirno stanje, kjer je na vsaki strani tetraedra vseh devet manjših trikotnikov enake barve. Najti želimo algoritme za reševanje Pyraminxa, zato smo v delu opisali LBL metodo. V nadaljevanju smo se osredotočili na lastnosti grupe pozicij Pyraminxa. Ugotovili bomo, da možne pozicije in povezave med njimi ustrezajo posebni grupni strukturi. Pozicijo Pyraminxa definiramo matematično s trojico (^⃑,^⃑⃑⃑,^), kjer ^⃑ predstavlja orientacijski vektor konic in centrov, ^⃑⃑⃑ orientacijski vektor robov, ^ pa predstavlja permutacijo robnih kosov. Na koncu dokažemo, da je grupa Pyraminxa izomorfna grupi ␤38×(␤26⣊^6), in poiščemo nekaj njenih podgrup.

Language:Slovenian
Keywords:Pyraminx, grupe, permutacije, poldirektni produkt grup, uganke
Work type:Master's thesis/paper
Typology:2.09 - Master's Thesis
Organization:PEF - Faculty of Education
Place of publishing:Ljubljana
Publisher:K. Urbančič
Year:2023
Number of pages:III, 57 str.
PID:20.500.12556/RUL-147289 This link opens in a new window
UDC:51(043.2)
COBISS.SI-ID:157294339 This link opens in a new window
Publication date in RUL:29.06.2023
Views:752
Downloads:47
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Mathematical Background of Pyraminx
Abstract:
In our thesis we shall describe the mathematical background of the Pyraminx. Pyraminx is a mechanical puzzle, made of various moveable pieces. One of the Pyraminx challenges is how to return the puzzle to its original position, where there are nine smaller triangles of the same colour on each side of the tetrahedron. Our goal is to find the algorithms for solving the Pyraminx. Our thesis therefore includes the description of the LBL method. Furthermore, we focus on the properties of the Pyraminx position group. We have determined that the possible positions and connections correspond to a particularly group structure. We can determine the Pyraminx position with the triple (^⃑, ^⃑⃑⃑, β), where ^⃑ stands for orientation vector of vertices and centres, where ^⃑⃑⃑ stands for the orientation vector of the edges, and β presents the edge permutation. In the end of the thesis we prove that the Pyraminx group is isomorphic to the group ␤38 ^ (␤26⣊^6).

Keywords:Pyraminx, groups, permutations, semi-direct product of groups, puzzles

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back