izpis_h1_title_alt

Interaktivno raziskovanje volumetričnih podatkov prek galerije prenosnih funkcij
ID GORUP, GORAZD (Author), ID Marolt, Matija (Mentor) More about this mentor... This link opens in a new window, ID Lesar, Žiga (Comentor)

.pdfPDF - Presentation file, Download (4,22 MB)
MD5: 4D646547109F0D7874E3017EC5F81F19

Abstract
V diplomski nalogi se lotevamo problema samodejnega generiranja prenosnih funkcij za poljubne volumetrične podatke. Proučimo dva pristopa z uporabo strojnega učenja. Prvi pristop vključuje pridobivanje učnih podatkov na podlagi človeške klasifikacije dobrih prenosnih funkcij. Na vhod nevronske mreže podamo volumetrične podatke, izhode pa primerjamo z ugodnimi prenosnimi funkcijami iz učnih podatkov. Drugi pristop obsega računalniško generiranje volumnov in klasificiranje značilnosti v njih. Med učenjem nevronske mreže vizualiziramo volumne z generiranimi prenosnimi funkcijami in učenje usmerjamo s štetjem ustrezno vidnih značilnosti na vizualizacijah. Pristopa primerjamo po uspešnosti in kakovosti generiranih prenosnih funkcij. Prvi pristop trpi zaradi pomanjkanja učnih podatkov in posledičnega pretiranega prileganja, z drugim pristopom pa ni mogoče izvesti učenja, saj cenilna funkcija ni odvedljiva.

Language:Slovenian
Keywords:grafika, volumetrični podatki, prenosne funkcije, VPT, strojno učenje, nevronske mreže
Work type:Bachelor thesis/paper
Typology:2.11 - Undergraduate Thesis
Organization:FRI - Faculty of Computer and Information Science
Year:2023
PID:20.500.12556/RUL-145599 This link opens in a new window
COBISS.SI-ID:150448131 This link opens in a new window
Publication date in RUL:25.04.2023
Views:611
Downloads:63
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Interactive discovery of volumetric data through the use of transfer function galleries
Abstract:
In this thesis, we tackle the problem of automatic transfer function generation for volumetric data rendering. We study two methods using machine learning techniques. The first method involves gathering training data through suitable transfer function selection and classification by human users. We use these training transfer functions to optimize a generative neural network. With the second method we take an automated approach of generating volumetric data and labelling generated features, then training neural network by rendering volumes with generated transfer functions, and comparing the feature visibility on visualizations with expected render output. We compare both methods based on learning success and quality of generated transfer functions. The first method suffers from over-fitting due to small amount of training data, while with the second method we show that the training of the network cannot be performed using gradient descent method.

Keywords:graphics, volumetric data, transfer functions, VPT, machine learning, neural networks

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back