Your browser does not allow JavaScript!
JavaScript is necessary for the proper functioning of this website. Please enable JavaScript or use a modern browser.
Open Science Slovenia
Open Science
DiKUL
slv
|
eng
Search
Browse
New in RUL
About RUL
In numbers
Help
Sign in
The Neumann problem for a class of generalized Kirchhoff-type potential systems
ID
Chems Eddine, Nabil
(
Author
),
ID
Repovš, Dušan
(
Author
)
PDF - Presentation file,
Download
(1,81 MB)
MD5: 28684B7CF87FC0BB2E588F0B18B9AAFC
URL - Source URL, Visit
https://link.springer.com/article/10.1186/s13661-023-01705-6
Image galllery
Abstract
In this paper, we are concerned with the Neumann problem for a class of quasilinear stationary Kirchhoff-type potential systems, which involves general variable exponents elliptic operators with critical growth and real positive parameter. We show that the problem has at least one solution, which converges to zero in the norm of the space as the real positive parameter tends to infinity, via combining the truncation technique, variational method, and the concentration–compactness principle for variable exponent under suitable assumptions on the nonlinearities.
Language:
English
Keywords:
Kirchhoff-type problems
,
Neumann boundary conditions
,
p(x)-Laplacian operator
,
generalized capillary operator
,
Sobolev spaces with variable exponent
,
critical Sobolev exponents
,
concentration–compactness principle
,
critical point theory
,
truncation technique
Work type:
Article
Typology:
1.01 - Original Scientific Article
Organization:
PEF - Faculty of Education
FMF - Faculty of Mathematics and Physics
Publication status:
Published
Publication version:
Version of Record
Year:
2023
Number of pages:
33 str.
Numbering:
Vol. 2023, art. 19
PID:
20.500.12556/RUL-144647
UDC:
517.956
ISSN on article:
1687-2770
DOI:
10.1186/s13661-023-01705-6
COBISS.SI-ID:
144015107
Publication date in RUL:
07.03.2023
Views:
638
Downloads:
111
Metadata:
Cite this work
Plain text
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
Copy citation
Share:
Record is a part of a journal
Title:
Boundary value problems
Shortened title:
Bound. value probl.
Publisher:
Springer Nature
ISSN:
1687-2770
COBISS.SI-ID:
62113025
Licences
License:
CC BY 4.0, Creative Commons Attribution 4.0 International
Link:
http://creativecommons.org/licenses/by/4.0/
Description:
This is the standard Creative Commons license that gives others maximum freedom to do what they want with the work as long as they credit the author.
Projects
Funder:
ARRS - Slovenian Research Agency
Project number:
P1-0292
Name:
Topologija in njena uporaba
Funder:
ARRS - Slovenian Research Agency
Project number:
J1-4031
Name:
Računalniška knjižnica za zavozlane strukture in aplikacije
Funder:
ARRS - Slovenian Research Agency
Project number:
J1-4001
Name:
Izbrani problemi iz uporabne in računske topologije
Funder:
ARRS - Slovenian Research Agency
Project number:
N1-0278
Name:
Biološka koda vozlov - identifikacija vzorcev vozlanja v biomolekulah z uporabo umetne inteligence
Funder:
ARRS - Slovenian Research Agency
Project number:
N1-0114
Name:
Algebrajski odtisi geometrijskih značilnosti v homologiji
Funder:
ARRS - Slovenian Research Agency
Project number:
N1-0083
Name:
Forsing, fuzija in kombinatorika odprtih pokritij
Similar documents
Similar works from RUL:
Similar works from other Slovenian collections:
Back