izpis_h1_title_alt

The Neumann problem for a class of generalized Kirchhoff-type potential systems
ID Chems Eddine, Nabil (Author), ID Repovš, Dušan (Author)

.pdfPDF - Presentation file, Download (1,81 MB)
MD5: 28684B7CF87FC0BB2E588F0B18B9AAFC
URLURL - Source URL, Visit https://link.springer.com/article/10.1186/s13661-023-01705-6 This link opens in a new window

Abstract
In this paper, we are concerned with the Neumann problem for a class of quasilinear stationary Kirchhoff-type potential systems, which involves general variable exponents elliptic operators with critical growth and real positive parameter. We show that the problem has at least one solution, which converges to zero in the norm of the space as the real positive parameter tends to infinity, via combining the truncation technique, variational method, and the concentration–compactness principle for variable exponent under suitable assumptions on the nonlinearities.

Language:English
Keywords:Kirchhoff-type problems, Neumann boundary conditions, p(x)-Laplacian operator, generalized capillary operator, Sobolev spaces with variable exponent, critical Sobolev exponents, concentration–compactness principle, critical point theory, truncation technique
Work type:Article
Typology:1.01 - Original Scientific Article
Organization:PEF - Faculty of Education
FMF - Faculty of Mathematics and Physics
Publication status:Published
Publication version:Version of Record
Year:2023
Number of pages:33 str.
Numbering:Vol. 2023, art. 19
PID:20.500.12556/RUL-144647 This link opens in a new window
UDC:517.956
ISSN on article:1687-2770
DOI:10.1186/s13661-023-01705-6 This link opens in a new window
COBISS.SI-ID:144015107 This link opens in a new window
Publication date in RUL:07.03.2023
Views:630
Downloads:111
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Record is a part of a journal

Title:Boundary value problems
Shortened title:Bound. value probl.
Publisher:Springer Nature
ISSN:1687-2770
COBISS.SI-ID:62113025 This link opens in a new window

Licences

License:CC BY 4.0, Creative Commons Attribution 4.0 International
Link:http://creativecommons.org/licenses/by/4.0/
Description:This is the standard Creative Commons license that gives others maximum freedom to do what they want with the work as long as they credit the author.

Projects

Funder:ARRS - Slovenian Research Agency
Project number:P1-0292
Name:Topologija in njena uporaba

Funder:ARRS - Slovenian Research Agency
Project number:J1-4031
Name:Računalniška knjižnica za zavozlane strukture in aplikacije

Funder:ARRS - Slovenian Research Agency
Project number:J1-4001
Name:Izbrani problemi iz uporabne in računske topologije

Funder:ARRS - Slovenian Research Agency
Project number:N1-0278
Name:Biološka koda vozlov - identifikacija vzorcev vozlanja v biomolekulah z uporabo umetne inteligence

Funder:ARRS - Slovenian Research Agency
Project number:N1-0114
Name:Algebrajski odtisi geometrijskih značilnosti v homologiji

Funder:ARRS - Slovenian Research Agency
Project number:N1-0083
Name:Forsing, fuzija in kombinatorika odprtih pokritij

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back