Human, animal, and even plant pathogens can be transmitted through water. One of the plant pathogenic viruses, for which the possibility of transmission through water has been confirmed, is potato virus Y (PVY). PVY is one of the most important potato viruses because it can destroy a large proportion of crops, causing major agricultural losses. PVY can also destroy some other plants in the Solanaceae family, such as tomato. Lack of clean water is a major global problem, and since agriculture consumes large amounts of it, closed irrigation systems that recycle water are being used. In order to prevent the spread of viruses with water, we need to remove or inactivate them. Therefore, new environmentally friendly methods are being developed to serve this purpose. One of these new methods is hydrodynamic cavitation. In this study, we treated tap water contaminated with PVY using hydrodynamic cavitation and observed the ability of the virus to infect plants after different treatment times. We showed that after 500 cavitation passes below a pressure difference of 700 000 Pa, the virus was no longer able to infect tobacco plants. In some experiments, the virus lost this ability after shorter treatment times. Viral infectivity was tested with test plants that were infected with aliquots of the treated sample. In addition to viral infectivity, we also tested RNA degradation using RT-PCR and its visualization using agarose gel electrophoresis. In some cases, only minor effect of cavitation on viral RNA was observed, suggesting that cavitation affects various viral structures to different extents, but viral inactivation is due to damage to the viral capsid, which was also observed by transmission electron microscopy. By adding radical scavengers, we showed that the radicals known to be generated during cavitation did not affect viral infectivity, suggesting that viral inactivation is likely caused by the mechanical effects of cavitation.
|