izpis_h1_title_alt

Analiza strojnega prevajanja terminologije v angleških in slovenskih besedilih
ID Simonišek, Živa (Author), ID Vintar, Špela (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (952,16 KB)
MD5: 6F041C7C452EB6B4C7D7E880DAB00FF5
.xlsxXLSX - Appendix, Download (43,64 KB)
MD5: E31596CBE828BE411521B558F8EA0CE8
.xlsxXLSX - Appendix, Download (46,10 KB)
MD5: 3F859297DD097D7AEAE17B17F1CC0641

Abstract
Nevronski strojni prevajalniki se kljub visoki kakovosti še vedno soočajo z določenimi težavami, med drugim s prevajanjem terminologije in s terminološko doslednostjo. V magistrskem delu analiziramo strojne prevode terminov v jezikovnem paru angleščina-slovenščina. Angleške in slovenske članke s področja krasoslovja smo prevedli z nevronskima strojnima prevajalnikoma DeepL in Google Translate, nato pa smo preučili vrste napak in jih razdelili v sedem kategorij. Strojne prevode terminov smo primerjali s prevodnimi ustreznicami v terminološki bazi in z referenčnim prevodom ter izračunali odstotke ujemanj. Največji odstotek smo zabeležili pri ujemanju prevodov Googlovega prevajalnika s termini v terminološki bazi (83 %). Nadaljnja analiza je pokazala, da sta strojna prevajalnika uspešnejša pri prevajanju terminov v slovenščino kot pri prevajanju v angleščino. Razlog za to je, da je mednarodna literatura določene krasoslovne termine prevzela iz slovanskih jezikov, npr. polje, doline, ponor. Ugotavljamo tudi, da Googlov prevajalnik dosega boljšo kakovost prevodov v obeh jezikovnih smereh, prav tako je pri prevajanju doslednejši.

Language:Slovenian
Keywords:strojno prevajanje, nevronski prevajalniki, prevajanje terminologije, terminološka doslednost, krasoslovje
Work type:Master's thesis/paper
Organization:FF - Faculty of Arts
Year:2023
PID:20.500.12556/RUL-144398 This link opens in a new window
COBISS.SI-ID:144643587 This link opens in a new window
Publication date in RUL:19.02.2023
Views:826
Downloads:155
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Analysis of machine translation of terminology in English and Slovenian texts
Abstract:
Despite their high quality, neural machine translation systems still face certain problems, including terminology translation and terminology consistency. This thesis analyzes machine translation of terms for the language pair English-Slovene. First, English and Slovene texts in karstology were translated using two NMT systems, DeepL and Google Translate. Incorrect translations of terms were then divided into seven categories. Machine translations of terms were compared with the translation equivalents in the term base and with the reference translation, and the match percentages were calculated. The highest match percentage was observed in matching the Google Translate translations with terms in the term base (83%). Further analysis revealed that the NMT systems achieve higher quality when translating terms into Slovene; the reason for this is that international literature has adopted certain karst terms from Slavic languages; for example, polje, doline, and ponor. More correct term translations were created by Google Translate, which also achieves higher terminology consistency.

Keywords:machine translation, neural machine translation systems, terminology translation, terminology consistency, karstology

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back