At the end of December 2019, an outbreak of atypical pneumonia of unknown origin was reported from the Wuhan, China. Genomic analysis has shown that it is a new representative of coronviruses, which has been named SARS-CoV-2. In less than a year after the outbreak, the virus caused a pandemic due to its high infectivity. The development of an effective vaccine was necessary for its control. To date, four SARS-CoV-2 vaccines based on mRNA and adenoviral vectors have been approved. A lot of attention has also been focused on the development of DNA-vaccines against SARS-CoV-2. The effectiveness of the DNA-vaccine depends on the method of introduction into the target tissue. One of the methods is electroporation, which increases the permeability of cell membranes and facilitates the entry od DNA into the cell cytoplasm. The transfection of DNA into a target cell by electroporation is called gene electrotransfer. The aim of the master's thesis was to compare the immune response after gene electrotransfer of the DNA-vaccine against the SARS-CoV-2 virus and cytokine IL-12 in the muscle and skin tissue. The immune response was evaluated in samples taken on the 13th and 28th day after vaccination. Commercially available ELISA tests were used to determine the presence and concentrations of IFNγ (non-specific immunity), as well as the titer of anti-N and anti-S IgG antibodies (specific humoral immunity). The tetramer test was used to determine portion of CD8+N+ and CD8+S+ T cells (specific cellular immunity). We have demonstrated that gene electrotransfer of DNA-vaccine elicits both non-specific and specific immunity against N and S protein. We found that the activation of the immune response is more intense after gene electrotransfer into the muscle and that in our case the N protein is more immunogenic than the S protein. We have also confirmed that gene electrotransfer is suitable method for introducing a DNA-vaccine into the target tissue.
|