Podrobno

Phase separating electrode materials - chemical inductors?
ID Zelič, Klemen (Avtor), ID Mele, Igor (Avtor), ID Bhowmik, Arghya (Avtor), ID Katrašnik, Tomaž (Avtor)

.pdfPDF - Predstavitvena datoteka, prenos (2,24 MB)
MD5: F7C57196D41738E94968892A080E0DD9
URLURL - Izvorni URL, za dostop obiščite https://www.sciencedirect.com/science/article/pii/S2405829723000090 Povezava se odpre v novem oknu

Izvleček
We unreveal mechanistic background of the presence of chemical inductive effects in phase separating ion intercalation energy storage materials, in particular lithium iron phosphate (LFP) and lithium titanate oxide (LTO), by applying a detailed phase field model. These materials feature fast (de)intercalation and slow diffusion relaxation phenomena, which are prerequisites for observing such inductive effects. The results are based on the mechanistic model and analytical considerations, which show that all equilibrium states that lie within the miscibility gap of the phase-separating material exhibit a strong inductive response in the low frequency part of the spectrum. We also explain why such inductive effects are not observed outside the miscibility gap. In this letter, we present the first mechanistic justification for the previously reported experimental observation of electrode level inductance in impedance measurements at low currents.

Jezik:Angleški jezik
Ključne besede:li-ion batteries, electrode materials, aktive particle, quazi 3D model, porous electrode model
Vrsta gradiva:Članek v reviji
Tipologija:1.01 - Izvirni znanstveni članek
Organizacija:FS - Fakulteta za strojništvo
Status publikacije:Objavljeno
Različica publikacije:Objavljena publikacija
Leto izida:2023
Št. strani:Str. 489-494
Številčenje:Vol. 56
PID:20.500.12556/RUL-144241 Povezava se odpre v novem oknu
UDK:621.313/.314
ISSN pri članku:2405-8297
DOI:10.1016/j.ensm.2023.01.008 Povezava se odpre v novem oknu
COBISS.SI-ID:140743427 Povezava se odpre v novem oknu
Datum objave v RUL:06.02.2023
Število ogledov:1210
Število prenosov:376
Metapodatki:XML DC-XML DC-RDF
:
ZELIČ, Klemen, MELE, Igor, BHOWMIK, Arghya in KATRAŠNIK, Tomaž, 2023, Phase separating electrode materials - chemical inductors? Energy storage materials [na spletu]. 2023. Vol. 56, p. 489–494. [Dostopano 20 julij 2025]. DOI 10.1016/j.ensm.2023.01.008. Pridobljeno s: https://repozitorij.uni-lj.si/IzpisGradiva.php?lang=slv&id=144241
Kopiraj citat
Objavi na:Bookmark and Share

Gradivo je del revije

Naslov:Energy storage materials
Založnik:Elsevier
ISSN:2405-8297
COBISS.SI-ID:6688026 Povezava se odpre v novem oknu

Licence

Licenca:CC BY-NC-ND 4.0, Creative Commons Priznanje avtorstva-Nekomercialno-Brez predelav 4.0 Mednarodna
Povezava:http://creativecommons.org/licenses/by-nc-nd/4.0/deed.sl
Opis:Najbolj omejujoča licenca Creative Commons. Uporabniki lahko prenesejo in delijo delo v nekomercialne namene in ga ne smejo uporabiti za nobene druge namene.

Sekundarni jezik

Jezik:Slovenski jezik
Ključne besede:litij ionske baterije, elektrodni materiali, aktivni delci, kvazi 3D model, model porozne elektrode

Projekti

Financer:EC - European Commission
Program financ.:H2020
Številka projekta:957189
Naslov:Battery Interface Genome - Materials Acceleration Platform
Akronim:BIG-MAP

Financer:ARRS - Agencija za raziskovalno dejavnost Republike Slovenije
Številka projekta:P2-0401
Naslov:Energetsko strojništvo

Podobna dela

Podobna dela v RUL:
  1. Using synthetic data to train convolutional neural networks for the case of hand detection
  2. Computer vision on embedded devices for natural user interfaces
  3. Long-term object tracking using region proposals
  4. Segmentacija rok za obogateno resničnost
  5. Melt pool detection at wire arc welding
Podobna dela v drugih slovenskih zbirkah:
  1. Person age estimation based on digital images using convolutional neural networks
  2. Development of an advanced system for lane detection on GPU platforms
  3. Food recognition from digital images using convolutional neural networks
  4. Time series classification based on convolutional neural networks
  5. The preparation of photos' dataset and its classification using deep neural networks

Nazaj