We analyse the bias of Slovenian news media towards political-ideological topics and people who often appear in them. We want to classify the articles into classes (against, for, neutral) according to authors' inclination towards a certain topic or person. Stance detection in Slovene language is not yet solved, as there is no dataset for this problem. To learn our models, we used a publicly available labelled training set of Twitter posts in English and in the translated Slovenian version. We test two classification models based on the BERT model, SloBERTa and CroSloEngualBERT. The experiments show significant differences between the topics. Most models predict best on full articles. The best results were obtained on the topic of feminism with the F1-measure of 0,58 and the worst on the topic of atheism with the F1-measure of 0,33.
|