izpis_h1_title_alt

Uporaba multivariatne analize in nevronskih mrež za identifikacijo in optimizacijo kritičnih lastnosti materialov ter procesnih parametrov valjčnega kompaktiranja in tabletiranja : doktorska disertacija
ID Prikeržnik, Marcel (Author), ID Srčič, Stanko (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (5,71 MB)
MD5: C7B69D0390AE27AE91C97EC9CAE29536

Abstract
Izdelava tablet je kompleksen proces na katerega vpliva veliko medsebojno povezanih faktorjev. Že male spremembe pri vhodnih surovinah in/ali procesnih parametrih lahko vplivajo na kakovost končnega izdelka. Zato je izredno pomembno ustrezno specificirati materiale in procesne parametre. Ključen namen raziskovalnih aktivnosti v okviru te doktorske naloge je bil razumeti vplive fizikalno-kemijskih lastnosti vhodnih surovin ter procesnih parametrov valjčnega kompaktiranja in končnega tabletiranja na sproščanje dveh vključenih zdravilnih učinkovin, kot biofarmacevtski parameter pri tabletah s takojšnjim sproščanjem. V prvem delu smo opravili študije uporabe multivariatne analize pri optimizaciji industrijske proizvodnje tablet. Metoda delnih najmanjših kvadratov je bila retrospektivno uporabljena na podatkih zbranih med dvoletno proizvodnjo za določitev vpliva 90 faktorjev. Identificirali smo osem kritičnih lastnosti materialov in štiri kritične procesne parametre. Z optimalno nastavitvijo tabletiranja kot zadnjega procesnega koraka smo lahko kompenzirali skupno variabilnost vseh materialov in parametrov predhodnih tehnoloških operacij. S procesno validacijo na industrijskem nivoju smo uspešno podprli te ugotovitve. V zadnjem delu študije smo z istim naborom podatkov uporabili nevronske mreže z namenom identificiranja nelinearnih prispevkov, ki so praviloma prisotni in pogosti pri vseh farmacevtskih procesih. Na osnovi teh rezultatov smo identificirali štiri nove kritične lastnosti materialov in tri kritične procesne parametre, ki pa niso bili identificirani s pred tem uporabljano multivariatno analizo. Uporaba multivariatne analize in nevronskih mrež zagotavlja razumevanje procesov in ustvarja možnosti za nenehne izboljšave. Prikazan pristop kaže veliko prednosti in fleksibilnosti ter je prenosljiv tudi na druge farmacevtske procese. Zagotavljanje predpisane kakovosti zdravil s postopki, ki smo jih opisali in uporabljali v okviru te naloge, bi zmanjšalo število neustreznih serij, znižalo stroške proizvodnje ter omogočilo boljšo oskrbo bolnikov.

Language:Slovenian
Keywords:pomožne snovi, izdelava tablet, multivariantna analiza, nevronske mreže, kritični procesni parametri, kritične lastnosti materialov
Work type:Dissertation
Typology:2.08 - Doctoral Dissertation
Organization:FFA - Faculty of Pharmacy
Place of publishing:Ljubljana
Publisher:[M. Prikeržnik]
Year:2022
Number of pages:108 str.
PID:20.500.12556/RUL-143834 This link opens in a new window
UDC:615.453(043.3)
COBISS.SI-ID:108228355 This link opens in a new window
Publication date in RUL:13.01.2023
Views:656
Downloads:61
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Application of multivariate analysis and artificial neural networks for identification and optimization of critical material attributes and process parameters of roller compaction and tablet compression
Abstract:
Tablet production is a complex process that can be influenced by many interrelated factors. Even minor variations in the raw materials and/or the manufacturing processes can affect the quality of the final product. Thus, it is essential to set the material specifications and process parameters correctly. The key research objective was to understand the influence of physicochemical properties of the raw materials and the process parameters of roller compaction and compression on dissolution as relevant biopharmaceutical parameters of immediate-release tablets. This study aimed initially to optimize the industrial tablet-manufacturing process using multivariate analysis. Partial least squares method was retrospectively applied to the data obtained from two years production, to study the influence of 90 factors on tablets that contained two active pharmaceutical ingredients. Eight critical material attributes and four critical process parameters were identified. With the optimal settings of the tablet compression as the final process step, the combined variability of all of the materials and previous process steps was compensated. Remarkably, our findings were supported with process validation on an industrial scale. In the last part of the study, artificial neural networks were used on the same data set to identify non-linear relationships, which are common for pharmaceutical processes. We identified four new critical material attributes and three new critical process parameters, not being identified by multivariate analysis. This technique assures better process understanding and creates opportunities for continuous improvements. Demonstrated approach shows many benefits and can be transferred to other pharmaceutical processes. Improved quality of the drug will decrease number of batches of insufficient quality, lower costs for drug production and provide better patient care.


Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back