izpis_h1_title_alt

Quasar : easy machine learning for biospectroscopy
ID Toplak, Marko (Avtor), ID Read, Stuart T. (Avtor), ID Sandt, Christophe (Avtor), ID Borondics, Ferenc (Avtor)

.pdfPDF - Predstavitvena datoteka, prenos (1,46 MB)
MD5: 62ADE91BB9A66442A9111CB783CC0755
URLURL - Izvorni URL, za dostop obiščite https://www.mdpi.com/2073-4409/10/9/2300 Povezava se odpre v novem oknu

Izvleček
Data volumes collected in many scientific fields have long exceeded the capacity of human comprehension. This is especially true in biomedical research where multiple replicates and techniques are required to conduct reliable studies. Ever-increasing data rates from new instruments compound our dependence on statistics to make sense of the numbers. The currently available data analysis tools lack user-friendliness, various capabilities or ease of access. Problem-specific software or scripts freely available in supplementary materials or research lab websites are often highly specialized, no longer functional, or simply too hard to use. Commercial software limits access and reproducibility, and is often unable to follow quickly changing, cutting-edge research demands. Finally, as machine learning techniques penetrate data analysis pipelines of the natural sciences, we see the growing demand for user-friendly and flexible tools to fuse machine learning with spectroscopy datasets. In our opinion, open-source software with strong community engagement is the way forward. To counter these problems, we develop Quasar, an open-source and user-friendly software, as a solution to these challenges. Here, we present case studies to highlight some Quasar features analyzing infrared spectroscopy data using various machine learning techniques.

Jezik:Angleški jezik
Ključne besede:open source, machine learning, visual programming, data exploration, data analysis, spectroscopy
Vrsta gradiva:Članek v reviji
Tipologija:1.01 - Izvirni znanstveni članek
Organizacija:FRI - Fakulteta za računalništvo in informatiko
Status publikacije:Objavljeno
Različica publikacije:Objavljena publikacija
Leto izida:2021
Št. strani:10 str.
Številčenje:Vol. 10, iss. 9, art. 2300
PID:20.500.12556/RUL-141968 Povezava se odpre v novem oknu
UDK:004.8:543.422.3-74
ISSN pri članku:2073-4409
DOI:10.3390/cells10092300 Povezava se odpre v novem oknu
COBISS.SI-ID:125220867 Povezava se odpre v novem oknu
Datum objave v RUL:13.10.2022
Število ogledov:852
Število prenosov:110
Metapodatki:XML DC-XML DC-RDF
:
Kopiraj citat
Objavi na:Bookmark and Share

Gradivo je del revije

Naslov:Cells
Skrajšan naslov:Cells
Založnik:MDPI
ISSN:2073-4409
COBISS.SI-ID:519958809 Povezava se odpre v novem oknu

Licence

Licenca:CC BY 4.0, Creative Commons Priznanje avtorstva 4.0 Mednarodna
Povezava:http://creativecommons.org/licenses/by/4.0/deed.sl
Opis:To je standardna licenca Creative Commons, ki daje uporabnikom največ možnosti za nadaljnjo uporabo dela, pri čemer morajo navesti avtorja.

Sekundarni jezik

Jezik:Slovenski jezik
Ključne besede:odprtokodna programska oprema, strojno učenje, vizualno programiranje, analiza podatkov, spektroskopija

Projekti

Financer:Drugi - Drug financer ali več financerjev
Program financ.:ELETTRA Synchrotron
Naslov:Quasar

Financer:Drugi - Drug financer ali več financerjev
Program financ.:SOLEIL Synchrotron
Naslov:Quasar

Financer:ARRS - Agencija za raziskovalno dejavnost Republike Slovenije
Program financ.:Bilateral travel grant, PROTEUS

Financer:Drugi - Drug financer ali več financerjev
Program financ.:Campus France, Bilateral travel grant, PHC PROTEUS
Številka projekta:37490NM

Financer:ARRS - Agencija za raziskovalno dejavnost Republike Slovenije
Številka projekta:P2-0209
Naslov:Umetna inteligenca in inteligentni sistemi

Podobna dela

Podobna dela v RUL:
Podobna dela v drugih slovenskih zbirkah:

Nazaj