izpis_h1_title_alt

Primerjava metod za detekcijo puščic pri klasičnem pikadu
ID ZGONC, MATIC (Author), ID Batagelj, Borut (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (16,29 MB)
MD5: 4AB67B300108C4696B841A9CB7300542

Abstract
V diplomski nalogi smo preverili, če se klasične metode računalniškega vida lahko primerjajo z modernimi pristopi, ki temeljijo na strojnem učenju in nevronskih mrežah. Primerjavo smo izvedli na problemu detekcije puščic pri klasičnem pikadu. Cilj je bil razviti sistem z visoko natančnostjo, ki bo enostaven za uporabo in cenovno dostopen. S pomočjo metod računalniškega vida smo najprej razvili klasični sistem, kjer smo opisali celoten postopek, od kalibracije do detekcije puščic. Sledil je razvoj sistemov, ki temeljijo na strojnem učenju. Uporabili smo različne arhitekture, da smo ugotovili, katera izmed njih prinaša najboljše rezultate. Po pridobitvi vseh rezultatov smo preverili še časovno zahtevnost posameznih pristopov. Sledila je končna primerjava sistemov glede na uspešnost in zmogljivost, ter cenovna primerjava razvitega sistema z obstoječimi rešitvami.

Language:Slovenian
Keywords:računalniški vid, OpenCV, pikado, YOLO, semantična segmentacija, instančna segmentacija
Work type:Bachelor thesis/paper
Typology:2.11 - Undergraduate Thesis
Organization:FRI - Faculty of Computer and Information Science
Year:2022
PID:20.500.12556/RUL-140925 This link opens in a new window
COBISS.SI-ID:124605187 This link opens in a new window
Publication date in RUL:21.09.2022
Views:738
Downloads:74
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Comparison of arrow detection methods for classic darts
Abstract:
In the thessis we compared classic methods of computer vision with modern approaches based on machine learning and neural networks. Comparison was made on problem of detecting arrows at steel darts. First we developed system based on classic methods of computer vision and described complete process from calibration to score prediction. Next we developed systems based on machine learning. We used different architectures to find out which give us the best results. After we gathered all results we checked time complexity on all developed systems. At the end we compared systems by detection rate, performance and checked price difference of our system with existing solutions.

Keywords:computer vision, OpenCV, darts, YOLO, semantic segmentation, instance segmentation

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back