In the assignment, we deal with the problem of heart fibrosis segmentation. We have 200 MRF simulations of cardiac images available, among which only 3 cardiac images without fibrosis. We simulate a real world situation where obtaining segmentations of heart images is time-consuming and most hearts imaged with magnetic resonance are diseased. We tackled the problem with the help of autoencoders, convolutional ones turned out to be the best.
We used convolutional neural networks in two ways. In the first, we tried to reconstruct identical images without fibrosis, and in the second, we tried to localize only the fibrosis. The second method turned out to be much more successful, achieving good results, while the first had its problems due to the insufficient number of images of a healthy heart. Nevertheless, the first method offers more opportunities for further research in this area, since it does not require images with attached segmentations, but only the information about, which images represent a healthy heart and which represent a heart with fibrosis.
|