izpis_h1_title_alt

Cayleyjev graf končnega kolobarja : delo diplomskega seminarja
ID Trdin, Meta (Author), ID Dolžan, David (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (703,32 KB)
MD5: 031856A25F28F884F724651AB376A3DD

Abstract
Naj bo $K$ končen komutativen kolobar z enico $1 \ne 0$. Cayleyjev graf končnega kolobarja $K$ je graf, kjer so vozlišča vsi elementi kolobarja $K$. Vozlišči $a$ in $b$ pa sta sosedni, če je $a - b$ obrnljiv element, torej če je $a - b \in K^\ast$. Tak graf je očitno neusmerjen. V nadaljevanju jih bomo označili z $G_K$. Pokazali bomo, da vedno dobimo regularen graf, v primeru lokalnega kolobarja z maksimalnim idealom $I$ pa tudi poln večdelen graf, katerega deli so ekvivalenčni razredi v njegovem kvocientnem kolobarju. Obravnavali bomo tudi strukturo grupe njegovih avtomorfizmov in izračunali, da so vsi kolobarji, ki podajajo ravninski graf, izomorfni eni izmed štirih oblik.

Language:Slovenian
Keywords:Cayleyjev graf, lokalen kolobar, klika, regularnost
Work type:Final seminar paper
Typology:2.11 - Undergraduate Thesis
Organization:FMF - Faculty of Mathematics and Physics
Year:2022
PID:20.500.12556/RUL-140816 This link opens in a new window
UDC:519.17
COBISS.SI-ID:122452739 This link opens in a new window
Publication date in RUL:18.09.2022
Views:658
Downloads:57
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Unitary Cayley graph of a finite ring
Abstract:
Let $K$ be finite commutative ring with unity $1 \ne 0$. Vertices of the Cayley graph of a finite ring $K$ are the elements of $K$. Two vertices $a$ and $b$ are adjacent if and only if $a - b$ is unit in $K$ so if $a - b \in K^\ast$. Obviously that graph is undirected. Throughout this paper we label Cayley graph with $G_K$. We show that the graph is always regular and if we take local ring for $K$ with maximal ideal $I$ we get a complete multipartite graph whose partite sets are the cosets of $I$. We also determine the structure of its automorphism group. We compute all planar graphs and show that there are only four forms for $K$ in that case.

Keywords:Cayley graph, local ring, clique, regularity

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back