izpis_h1_title_alt

Očrtane kocke : delo diplomskega seminarja
ID Melanšek, Matej (Author), ID Vavpetič, Aleš (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (802,43 KB)
MD5: 6CDD613F4FD67952ACD14F9E139AE435

Abstract
V delu je predstavljena rešitev problema očrtanih kock, pogosto imenovana Kakutanijev izrek. Ta nam pove, da lahko vsaki omejeni zaprti konveksni množici v ${\mathbb R}^3$ očrtamo kocko. Prav tako je opisana teorija homotopije, fundamentalih grup in kontraktibilnosti, ki jo potrebujemo, da dokažemo da je vsaka dvakrat ovita zanka v grupi $SO(3)$ homotopna konstantni preslikavi. Dokažemo tudi par posledic, ki sledijo iz dokaza Kakutanijevega izreka, med katerimi je razširitev problema na višje dimenzije. Izkaže se, da je odgovor na ta problem prav tako pritrdilen. Torej lahko poljubni konveksi množici v ${\mathbb R}^n$ očrtamo $n$-dimenzionalno kocko. V zadnjem poglavju na kratko opišemo še zgodovino reševanja Knasterjevih problemov in dokažemo, da Knasterjeva domneva ne velja v splošnem.

Language:Slovenian
Keywords:očrtane kocke, Kakutanijev izrek, fundamentalne grupe, specialne ortogonalne grupe, kontraktibilnost, Knasterjev problem
Work type:Final seminar paper
Typology:2.11 - Undergraduate Thesis
Organization:FMF - Faculty of Mathematics and Physics
Year:2022
PID:20.500.12556/RUL-140814 This link opens in a new window
UDC:515.1
COBISS.SI-ID:122340099 This link opens in a new window
Publication date in RUL:18.09.2022
Views:2679
Downloads:70
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Circumscribed cubes
Abstract:
In this paper we solve the problem of circumscribed cubes, frequently simply named Kakutani’s theorem. This theorem tells us, that we can circumscribe a cube around every closed bounded set in ${\mathbb R}^3$. Furthermore we describe the theory of homotopies, fundamental groups and contractible spaces needed to prove, that every double loop in the group $SO(3)$ is homotopic to a constant map. We also prove a few corollaries of Kakutani’s theorem, one of them being the extension of the problem to higher dimensions. It turns out that the answer to that problem is also affirmative. That means, that we can circumscribe a $n$-cube around every closed bounded set in ${\mathbb R}^n$. At the end we briefly summarize the history of solving Knaster’s problems and prove that in general Knaster’s conjecture is false.

Keywords:circumscribed cubes, Kakutani’s theorem, fundamental groups, special orthogonal groups, contractibility, Knaster’s problem

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back