izpis_h1_title_alt

Generiranje slik oči z globokimi generativnimi modeli
ID Tomašević, Darian (Author), ID Štruc, Vitomir (Mentor) More about this mentor... This link opens in a new window, ID Peer, Peter (Comentor)

.pdfPDF - Presentation file, Download (10,73 MB)
MD5: 7A91C404B4A1D72428A1B9623185E5D9

Abstract
Večina modernih pristopov za segmentacijo oči temelji na metodah globokega učenja, ki potrebujejo velike količine anotiranih podatkov. Zbiranje in anotacija tovrstnih biometričnih podatkov je izjemno dolgotrajna, medtem ko je njihova uporaba ponavadi omejena zaradi varovanja zasebnosti. V magistrskem delu predstavimo rešitev v obliki novega ogrodja za generiranje sintetičnih podatkov, poimenovanega BiOcularGAN, ki je zmožen sinteze fotorealističnih slik oči v vidnem in bližnje infrardečem svetlobnem spektru ter pripadajočih segmentacijskih mask. Pristop temelji na izvirnem dvo-vejnem modelu StyleGAN2, ki omogoči generiranje kvalitetnih in poravnanih bimodalnih slik oči. Z uporabo latentnih informacij, prisotnih v modelu, je predstavljeno ogrodje zmožno ustvarjanja izjemno natančnih pripadajočih segmentacijskih mask na podlagi izredno majhnega števila ročno anotiranih primerov. Za evalvacijo uspešnosti ogrodja BiOcularGAN izvedemo eksperimente na petih podatkovnih bazah oči in analiziramo vpliv hkratnega generiranja bimodalnih podatkov na kvaliteto pridobljenih slik in mask. Pokažemo tudi, da lahko ustvarjene sintetične podatkovne baze uporabimo za učenje sodobnih globokih segmentacijskih modelov, ki so zmožni natančne segmentacije novih in raznolikih slik oči.

Language:Slovenian
Keywords:globoko učenje, slikovna biometrija, bogatenje podatkov, nevronske mreže, generativne nasprotniške mreže
Work type:Master's thesis/paper
Typology:2.09 - Master's Thesis
Organization:FRI - Faculty of Computer and Information Science
Year:2022
PID:20.500.12556/RUL-140177 This link opens in a new window
COBISS.SI-ID:122057987 This link opens in a new window
Publication date in RUL:12.09.2022
Views:1092
Downloads:156
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Generating ocular images with deep generative models
Abstract:
Most modern segmentation techniques for ocular images are based on deep learning methods and are thus critically dependent on large-scale annotated datasets. Unfortunately, suitable datasets are labour-intensive to gather and often raise privacy concerns. To address these issues, we present a novel framework, called BiOcularGAN, capable of generating large-scale synthetic datasets of photorealistic ocular images, in both the visible and the near-infrared light spectrum, along with corresponding segmentation masks. The framework is centered around an innovative Dual-Branch StyleGAN2 model, which facilitates the generation of high-quality aligned bimodal images. By exploiting latent features of the model, the framework is also able to produce extremely accurate segmentation masks of the synthetic images, based only on a handful of manually labeled examples, therefore minimizing human involvement. We evaluate the BiOcularGAN framework through extensive experiments across five diverse ocular datasets and analyze how bimodal data generation affects the quality of produced images and masks. In addition, we showcase that the generated data can be employed to train highly successful deep segmentation models, which can generalize well to other real-world datasets.

Keywords:deep learning, image-based biometrics, data augmentation, neural networks, generative adversarial networks

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back