izpis_h1_title_alt

Flexible domains for minimal surfaces in Euclidean spaces
ID Drinovec-Drnovšek, Barbara (Author), ID Forstnerič, Franc (Author)

.pdfPDF - Presentation file, Download (460,24 KB)
MD5: 729998381A456B9326067B18A66742A6
URLURL - Source URL, Visit https://www.sciencedirect.com/science/article/pii/S0022247X22006679 This link opens in a new window

Abstract
In this paper we introduce and investigate a new notion of flexibility for domains in Euclidean spaces $\mathbb{R}^n$ for $n\ge 3$ in terms of minimal surfaces which they contain. A domain $\Omega$ in $\mathbb{R}^n$ is said to be flexible if every conformal minimal immersion $U \to \Omega$ from a Runge domain $U$ in an open conformal surface $M$ can be approximated uniformly on compacts, with interpolation on any given finite set, by conformal minimal immersion $M \to \Omega$. Together with hyperbolicity phenomena considered in recent works, this extends the dichotomy between flexibility and rigidity from complex analysis to minimal surface theory.

Language:English
Keywords:minimal surface, flexible domain, hyperbolic domain, Oka manifold, keywords minimal surface
Work type:Article
Typology:1.01 - Original Scientific Article
Organization:FMF - Faculty of Mathematics and Physics
Publication status:Published
Publication version:Version of Record
Year:2023
Number of pages:15 str.
Numbering:Vol. 517, iss. 2, art. 126653
PID:20.500.12556/RUL-140155 This link opens in a new window
UDC:517.55:514.7
ISSN on article:0022-247X
DOI:10.1016/j.jmaa.2022.126653 This link opens in a new window
COBISS.SI-ID:120880899 This link opens in a new window
Publication date in RUL:12.09.2022
Views:1207
Downloads:117
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Record is a part of a journal

Title:Journal of mathematical analysis and applications
Shortened title:J. math. anal. appl.
Publisher:Elsevier
ISSN:0022-247X
COBISS.SI-ID:3081231 This link opens in a new window

Licences

License:CC BY-NC-ND 4.0, Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International
Link:http://creativecommons.org/licenses/by-nc-nd/4.0/
Description:The most restrictive Creative Commons license. This only allows people to download and share the work for no commercial gain and for no other purposes.

Secondary language

Language:Slovenian
Keywords:minimalna ploskev, fleksibilna domena, hiperbolična domena, Okova mnogoterost

Projects

Funder:ARRS - Slovenian Research Agency
Project number:P1-0291
Name:Analiza in geometrija

Funder:ARRS - Slovenian Research Agency
Project number:J1-3005
Name:Kompleksna in geometrijska analiza

Funder:ARRS - Slovenian Research Agency
Project number:N1-0137
Name:Nelinearni valovi in spektralna teorija

Funder:ARRS - Slovenian Research Agency
Project number:N1-0237
Name:Holomorfne parcialne diferencialne relacije

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back