Your browser does not allow JavaScript!
JavaScript is necessary for the proper functioning of this website. Please enable JavaScript or use a modern browser.
Open Science Slovenia
Open Science
DiKUL
slv
|
eng
Search
Browse
New in RUL
About RUL
In numbers
Help
Sign in
Flexible domains for minimal surfaces in Euclidean spaces
ID
Drinovec-Drnovšek, Barbara
(
Author
),
ID
Forstnerič, Franc
(
Author
)
PDF - Presentation file,
Download
(460,24 KB)
MD5: 729998381A456B9326067B18A66742A6
URL - Source URL, Visit
https://www.sciencedirect.com/science/article/pii/S0022247X22006679
Image galllery
Abstract
In this paper we introduce and investigate a new notion of flexibility for domains in Euclidean spaces $\mathbb{R}^n$ for $n\ge 3$ in terms of minimal surfaces which they contain. A domain $\Omega$ in $\mathbb{R}^n$ is said to be flexible if every conformal minimal immersion $U \to \Omega$ from a Runge domain $U$ in an open conformal surface $M$ can be approximated uniformly on compacts, with interpolation on any given finite set, by conformal minimal immersion $M \to \Omega$. Together with hyperbolicity phenomena considered in recent works, this extends the dichotomy between flexibility and rigidity from complex analysis to minimal surface theory.
Language:
English
Keywords:
minimal surface
,
flexible domain
,
hyperbolic domain
,
Oka manifold
,
keywords minimal surface
Work type:
Article
Typology:
1.01 - Original Scientific Article
Organization:
FMF - Faculty of Mathematics and Physics
Publication status:
Published
Publication version:
Version of Record
Year:
2023
Number of pages:
15 str.
Numbering:
Vol. 517, iss. 2, art. 126653
PID:
20.500.12556/RUL-140155
UDC:
517.55:514.7
ISSN on article:
0022-247X
DOI:
10.1016/j.jmaa.2022.126653
COBISS.SI-ID:
120880899
Publication date in RUL:
12.09.2022
Views:
1207
Downloads:
117
Metadata:
Cite this work
Plain text
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
Copy citation
Share:
Record is a part of a journal
Title:
Journal of mathematical analysis and applications
Shortened title:
J. math. anal. appl.
Publisher:
Elsevier
ISSN:
0022-247X
COBISS.SI-ID:
3081231
Licences
License:
CC BY-NC-ND 4.0, Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International
Link:
http://creativecommons.org/licenses/by-nc-nd/4.0/
Description:
The most restrictive Creative Commons license. This only allows people to download and share the work for no commercial gain and for no other purposes.
Secondary language
Language:
Slovenian
Keywords:
minimalna ploskev
,
fleksibilna domena
,
hiperbolična domena
,
Okova mnogoterost
Projects
Funder:
ARRS - Slovenian Research Agency
Project number:
P1-0291
Name:
Analiza in geometrija
Funder:
ARRS - Slovenian Research Agency
Project number:
J1-3005
Name:
Kompleksna in geometrijska analiza
Funder:
ARRS - Slovenian Research Agency
Project number:
N1-0137
Name:
Nelinearni valovi in spektralna teorija
Funder:
ARRS - Slovenian Research Agency
Project number:
N1-0237
Name:
Holomorfne parcialne diferencialne relacije
Similar documents
Similar works from RUL:
Similar works from other Slovenian collections:
Back