Vaš brskalnik ne omogoča JavaScript!
JavaScript je nujen za pravilno delovanje teh spletnih strani. Omogočite JavaScript ali pa uporabite sodobnejši brskalnik.
Repozitorij Univerze v Ljubljani
Nacionalni portal odprte znanosti
Odprta znanost
DiKUL
slv
|
eng
Iskanje
Brskanje
Novo v RUL
Kaj je RUL
V številkah
Pomoč
Prijava
Podrobno
Zaznavanje gest v video tokovih na vgrajeni napravi
ID
Rolih, Blaž
(
Avtor
),
ID
Čehovin Zajc, Luka
(
Mentor
)
Več o mentorju...
PDF - Predstavitvena datoteka,
prenos
(4,32 MB)
MD5: 8B2755ED83AE96EB118D51D4AD5A33B7
Galerija slik
Izvleček
V okviru diplomskega dela je implementiran in ovrednoten nosljiv prototip za zaznavanje ročnih gest, ki deluje na vgrajeni napravi OAK-D iz platforme DepthAI. Vgrajena naprava omogoča učinkovit zajem slike in obdelavo le-te z uporabo raznih operacij računalniškega vida, vključno z izvajanjem globokih nevronskih mrež. Prototip z uporabo več zaporednih nevronskih mrež in vmesnih operacij določi pozicijo roke v prvoosebnem načinu, roki sledi in glede na časovni potek pozicije roke določi gesto. Vse to skoraj v celoti teče na vgrajeni napravi, kar razbremeni gostiteljski sistem in omogoča nizke zakasnitve pri zaznavanju. Za praktično testiranje je implementirano upravljanje predvajalnika glasbe. S tem namenom je zbrana podatkovna množica gest, ki kljub svojemu omejenemu obsegu omogoča, da se sistem zanesljivo nauči prepoznavati različne geste. Sistem je eksperimentalno evalviran na testni množici, kjer dosega zaželeno točnost. Dobro se obnese tudi v realnem scenariju, kjer je bil sistem preizkušen s strani testnih uporabnikov z upravljanjem glasbe v realnem času.
Jezik:
Slovenski jezik
Ključne besede:
geste
,
računalniški vid na vgrajenih napravah
,
DepthAI
,
CNN
,
LSTM
Vrsta gradiva:
Diplomsko delo/naloga
Tipologija:
2.11 - Diplomsko delo
Organizacija:
FRI - Fakulteta za računalništvo in informatiko
Leto izida:
2022
PID:
20.500.12556/RUL-139723
COBISS.SI-ID:
121799939
Datum objave v RUL:
06.09.2022
Število ogledov:
1109
Število prenosov:
151
Metapodatki:
Citiraj gradivo
Navadno besedilo
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
ROLIH, Blaž, 2022,
Zaznavanje gest v video tokovih na vgrajeni napravi
[na spletu]. Diplomsko delo. [Dostopano 23 marec 2025]. Pridobljeno s: https://repozitorij.uni-lj.si/IzpisGradiva.php?lang=slv&id=139723
Kopiraj citat
Objavi na:
Sekundarni jezik
Jezik:
Angleški jezik
Naslov:
Gesture recognition in video streams on an embedded device
Izvleček:
In this diploma thesis, a wearable prototype for the detection of hand gestures is implemented and evaluated, which works on the OAK-D embedded device from the DepthAI platform. Embedded device is capable of efficient image capture and image processing using various computer vision operations, including deep neural networks. Using a sequence of neural networks and intermediate operations, the prototype determines the position of the hand in first-person mode, tracks the hand and, based on the time course of the hand position, determines the gesture. All of this runs almost entirely on the embedded device, offloading the host system and enabling low detection latencies. For practical testing, music player control is implemented. For this purpose, a dataset of gestures has been collected, which, despite its limited scope, enables the system to reliably learn to recognize different gestures. The system is experimentally evaluated on a test set, where it achieves the desired accuracy. It also performs well in a real-world scenario where the system has been tested by test users controlling music playback in real-time.
Ključne besede:
gestures
,
embedded computer vision
,
DepthAI
,
CNN
,
LSTM
Podobna dela
Podobna dela v RUL:
Object tracking by segmentation and color depth image prediction
Transcription of piano music with convolutional neural networks
Prediction of interactions between proteins and RNA with deep 3D convolutional neural networks
Superposition and compression of deep neutral networks
Automatic punctuation in raw word sequences
Podobna dela v drugih slovenskih zbirkah:
Time series classification based on convolutional neural networks
Nazaj