izpis_h1_title_alt

On the normalizer of the reflexive cover of a unital algebra of linear transformations
ID Bračič, Janko (Author), ID Kandić, Marko (Author)

.pdfPDF - Presentation file, Download (494,52 KB)
MD5: 23A122D589260F587D8ACAEE56C3CA0C
URLURL - Source URL, Visit https://www.sciencedirect.com/science/article/pii/S0024379522002907 This link opens in a new window

Abstract
Given a unital algebra ${\mathcal A}$ of linear transformations on a finite-dimensional complex vector space $V$, in this paper we study the set $\mathrm{Col}({\mathcal A})$ consisting of those invertible linear transformations $S$ on $V$ which map every subspace $M\in Lat({\mathcal A})$ to a subspace $SM\in \mathrm{Lat}({\mathcal A})$. We show that $Col({\mathcal A})$ is the normalizer of the group of invertible linear transformations in the reflexive cover of ${\mathcal A}$. For the unital algebra $(A)$ which is generated by a linear transformation $A$, we give the complete description of $\mathrm{Col}(A)$. By using the primary decomposition of $A$, we first reduce the problem of characterizing $\mathrm{Col}(A)$ to the problem of characterizing the group $\mathrm{Col}(N)$ of a given nilpotent linear transformation $N$. While $\mathrm{Col}(N)$ always contains all invertible linear transformations of the commutant of $(N)'$ of $N$, it is always contained in the reflexive cover of $(N)'$. We prove that $\mathrm{Col}(N)$ is a proper subgroup of $\mathrm{(AlgLat}(N)')^{-1}$ if and only if at least two Jordan blocks in the Jordan decomposition of $N$ are of dimension 2 or more. We also determine the group $\mathrm{Col}(J_2 \oplus J_2)$.

Language:English
Keywords:invariant subspace, collineation, normalizer, reflexive cover
Work type:Article
Typology:1.01 - Original Scientific Article
Organization:NTF - Faculty of Natural Sciences and Engineering
FMF - Faculty of Mathematics and Physics
Publication status:Published
Publication version:Version of Record
Year:2022
Number of pages:Str. 207-230
Numbering:Vol. 653
PID:20.500.12556/RUL-139720 This link opens in a new window
UDC:517.983:512.643
ISSN on article:0024-3795
DOI:10.1016/j.laa.2022.08.013 This link opens in a new window
COBISS.SI-ID:119088643 This link opens in a new window
Publication date in RUL:06.09.2022
Views:892
Downloads:129
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Record is a part of a journal

Title:Linear algebra and its applications
Shortened title:Linear algebra appl.
Publisher:Elsevier
ISSN:0024-3795
COBISS.SI-ID:1119247 This link opens in a new window

Licences

License:CC BY-NC-ND 4.0, Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International
Link:http://creativecommons.org/licenses/by-nc-nd/4.0/
Description:The most restrictive Creative Commons license. This only allows people to download and share the work for no commercial gain and for no other purposes.

Secondary language

Language:Slovenian
Keywords:invarianten podprostor, kolineacija, normalizator, refleksivno pokritje

Projects

Funder:ARRS - Slovenian Research Agency
Project number:P2-0268
Name:Geotehnologija

Funder:ARRS - Slovenian Research Agency
Project number:P1-0222
Name:Algebra, teorija operatorjev in finančna matematika

Funder:ARRS - Slovenian Research Agency
Project number:J1-2453
Name:Matrično konveksne množice in realna algebraična geometrija

Funder:ARRS - Slovenian Research Agency
Project number:J1-2454
Name:Izomorfizmi, izometrije in ohranjevalci

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back