Your browser does not allow JavaScript!
JavaScript is necessary for the proper functioning of this website. Please enable JavaScript or use a modern browser.
Open Science Slovenia
Open Science
DiKUL
slv
|
eng
Search
Browse
New in RUL
About RUL
In numbers
Help
Sign in
On the normalizer of the reflexive cover of a unital algebra of linear transformations
ID
Bračič, Janko
(
Author
),
ID
Kandić, Marko
(
Author
)
PDF - Presentation file,
Download
(494,52 KB)
MD5: 23A122D589260F587D8ACAEE56C3CA0C
URL - Source URL, Visit
https://www.sciencedirect.com/science/article/pii/S0024379522002907
Image galllery
Abstract
Given a unital algebra ${\mathcal A}$ of linear transformations on a finite-dimensional complex vector space $V$, in this paper we study the set $\mathrm{Col}({\mathcal A})$ consisting of those invertible linear transformations $S$ on $V$ which map every subspace $M\in Lat({\mathcal A})$ to a subspace $SM\in \mathrm{Lat}({\mathcal A})$. We show that $Col({\mathcal A})$ is the normalizer of the group of invertible linear transformations in the reflexive cover of ${\mathcal A}$. For the unital algebra $(A)$ which is generated by a linear transformation $A$, we give the complete description of $\mathrm{Col}(A)$. By using the primary decomposition of $A$, we first reduce the problem of characterizing $\mathrm{Col}(A)$ to the problem of characterizing the group $\mathrm{Col}(N)$ of a given nilpotent linear transformation $N$. While $\mathrm{Col}(N)$ always contains all invertible linear transformations of the commutant of $(N)'$ of $N$, it is always contained in the reflexive cover of $(N)'$. We prove that $\mathrm{Col}(N)$ is a proper subgroup of $\mathrm{(AlgLat}(N)')^{-1}$ if and only if at least two Jordan blocks in the Jordan decomposition of $N$ are of dimension 2 or more. We also determine the group $\mathrm{Col}(J_2 \oplus J_2)$.
Language:
English
Keywords:
invariant subspace
,
collineation
,
normalizer
,
reflexive cover
Work type:
Article
Typology:
1.01 - Original Scientific Article
Organization:
NTF - Faculty of Natural Sciences and Engineering
FMF - Faculty of Mathematics and Physics
Publication status:
Published
Publication version:
Version of Record
Year:
2022
Number of pages:
Str. 207-230
Numbering:
Vol. 653
PID:
20.500.12556/RUL-139720
UDC:
517.983:512.643
ISSN on article:
0024-3795
DOI:
10.1016/j.laa.2022.08.013
COBISS.SI-ID:
119088643
Publication date in RUL:
06.09.2022
Views:
886
Downloads:
129
Metadata:
Cite this work
Plain text
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
Copy citation
Share:
Record is a part of a journal
Title:
Linear algebra and its applications
Shortened title:
Linear algebra appl.
Publisher:
Elsevier
ISSN:
0024-3795
COBISS.SI-ID:
1119247
Licences
License:
CC BY-NC-ND 4.0, Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International
Link:
http://creativecommons.org/licenses/by-nc-nd/4.0/
Description:
The most restrictive Creative Commons license. This only allows people to download and share the work for no commercial gain and for no other purposes.
Secondary language
Language:
Slovenian
Keywords:
invarianten podprostor
,
kolineacija
,
normalizator
,
refleksivno pokritje
Projects
Funder:
ARRS - Slovenian Research Agency
Project number:
P2-0268
Name:
Geotehnologija
Funder:
ARRS - Slovenian Research Agency
Project number:
P1-0222
Name:
Algebra, teorija operatorjev in finančna matematika
Funder:
ARRS - Slovenian Research Agency
Project number:
J1-2453
Name:
Matrično konveksne množice in realna algebraična geometrija
Funder:
ARRS - Slovenian Research Agency
Project number:
J1-2454
Name:
Izomorfizmi, izometrije in ohranjevalci
Similar documents
Similar works from RUL:
Similar works from other Slovenian collections:
Back