Bisphenols (BPs) are a group of industrial chemicals used in the manufacture of plastics and epoxy resin. They are found in various products, including the inner linings of cans, baby bottles, toys, thermal paper, and others used in our daily life. Therefore, BPs are present in the environment. The most widely used BP is bisphenol A (BPA), on which most studies have been conducted showing its adverse effects on human health, especially its endocrine disrupting activity. Therefore, the European Union began to restrict and eventually ban the use of BPA to protect human health and the environment. The ban has led to the development of supposedly safer BPA analogues, for which few toxicological data are available. In the master thesis, we investigated the cytotoxic and genotoxic activity of BPA and its analogues (BPAF, BPAP, BPC, BPFL, BPS) in a liver in vitro 3D cell model. In this study, we prepared spheroids by the forced floating method and measured cell viability after exposure to BPs using the MTS assay. We measured the surface area and observed the shape and compactness of the spheroids with microscopy and studied the genotoxic effects with the comet assay at 24 and 96-hour exposure. After 24-hour exposure to BPs, BPFL > BPAF = BPAP statistically significantly decreased the viability of HepG2 and after 96 hours, we observed a similar effect on cell viability in BPFL > BPC = BPAP > BPA = BPAF. BPC and BPFL had the greatest effect on morphological changes in growth, surface area, compactness, and shape of the spheroids that were evident at 96-hour exposure. Of the six BPs tested by the comet assay, BPAF and BPS (⡥ 10 μM) and BPAP (⡥ 40 μM) exhibited stronger genotoxic potential than BPA, BPFL, and BPC after 24 hours of exposure. After 96 hours of exposure, BPAP was the most genotoxic causing/inducing DNA damage at ⡥1 µM. All others BPs studied statistically significantly increased DNA damage at higher concentrations. To summarize, despite their similar chemical structure, the toxic activity of the analogues is not the same, and therefore further studies on the BPA analogues and their molecular activity are needed to provide/make accurate risk assessment.
|