izpis_h1_title_alt

A nonclassical solution to a classical SDE and a converse to Kolmogorov's zero–one law
ID Vidmar, Matija (Author)

.pdfPDF - Presentation file, Download (473,86 KB)
MD5: 623DD0455170B1BE3DB2F3C5376A77DA
URLURL - Source URL, Visit https://www.sciencedirect.com/science/article/pii/S0167715221000791 This link opens in a new window

Abstract
For a discrete-negative-time discrete-space SDE, which admits no strong solution in the classical sense, a weak solution is constructed that is a (necessarily nonmeasurable) non-anticipative function of the driving i.i.d. noise. The result highlights the strong rôle measurability plays in (non-discrete) probability. En route one — quite literally — stumbles upon a converse to the celebrated Kolmogorov’s zero–one law for sequences with independent values.

Language:English
Keywords:stochastic equations, equiprobable random signs, non-anticipative weak solutions, nonmeasurable sets, Kolmogorov's zero–one law
Work type:Article
Typology:1.01 - Original Scientific Article
Organization:FMF - Faculty of Mathematics and Physics
Publication status:Published
Publication version:Version of Record
Year:2021
Number of pages:6 str.
Numbering:Vol. 175, art. 109117
PID:20.500.12556/RUL-138678 This link opens in a new window
UDC:519.216
ISSN on article:0167-7152
DOI:10.1016/j.spl.2021.109117 This link opens in a new window
COBISS.SI-ID:61497347 This link opens in a new window
Publication date in RUL:09.08.2022
Views:570
Downloads:101
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Record is a part of a journal

Title:Statistics & probability letters
Shortened title:Stat. probab. lett.
Publisher:Elsevier
ISSN:0167-7152
COBISS.SI-ID:1248533 This link opens in a new window

Licences

License:CC BY-NC-ND 4.0, Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International
Link:http://creativecommons.org/licenses/by-nc-nd/4.0/
Description:The most restrictive Creative Commons license. This only allows people to download and share the work for no commercial gain and for no other purposes.

Secondary language

Language:Slovenian
Keywords:stohastične enačbe, enako verjetni slučajni predznaki, neanticipirajoča šibka rešitev, nemerljive množice, Kolmogorov zakon nič – ena

Projects

Funder:ARRS - Slovenian Research Agency
Project number:P1-0402
Name:Matematična fizika

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back