izpis_h1_title_alt

Grassland use intensity classification using intra-annual Sentinel-1 and -2 time series and environmental variables
ID Potočnik Buhvald, Ana (Avtor), ID Račič, Matej (Avtor), ID Immitzer, Markus (Avtor), ID Oštir, Krištof (Avtor), ID Veljanovski, Tatjana (Avtor)

.pdfPDF - Predstavitvena datoteka, prenos (2,17 MB)
MD5: 2978BDA06D9053B3955A250C24342046
URLURL - Izvorni URL, za dostop obiščite https://www.mdpi.com/2072-4292/14/14/3387 Povezava se odpre v novem oknu

Izvleček
Detailed spatial data on grassland use intensity is needed in several European policy areas for various applications, e.g., agricultural management, supporting nature conservation programs, improving biodiversity strategies, etc. Multisensory remote sensing is an efficient tool to collect information on grassland parameters. However, there is still a lack of studies on how to process, combine, and implement large radar and optical image datasets in a joint observation framework to map grassland types on large heterogeneous study areas. In our study, we assessed the usefulness of 2521 Sentinel-1 and 586 Sentinel-2 satellite images and topographic data for mapping grassland use intensity. We focused on the distinction between intensively and extensively managed permanent grassland in a large heterogeneous study area in Slovenia. We provided dense Satellite Image Time Series (SITS) for 2017, 2018 and 2019 to identify important differences, e.g., management practices, between the two grassland types analysed. We also investigated the effectiveness of combining two different remote-sensing products, the optical Normalised Difference Vegetation Index (NDVI) and radar coherence. Grassland types were distinguished using an object-based approach and the Random Forest classification. With the use of SITS only, the models achieved poor performance in the case of cloudy years (2018). However, the performance improved with additional features (environmental variables). The feature selection method based on Mean Decrease Accuracy (MDA) provided a deeper insight into the high-dimensional multisensory SITS. It helped select the most relevant features (acquisition dates, environmental variables) that distinguish between intensive and extensive grassland types. The addition of environmental variables improved the overall classification accuracy by 7–15%, while the feature selection additionally improved the final overall classification accuracy (using all available features) by 2–3%. Although the reference dataset was limited (1259 training samples), the final overall classification accuracy was above 88% in all years analysed. The results show that the proposed Random Forest classification using combined multisensor data and environmental variables can provide better and more stable information on grasslands than single optical or radar data SITS on large heterogeneous areas. Therefore, a combined approach is recommended to distinguish different grassland types.

Jezik:Angleški jezik
Ključne besede:extensive managed grassland, intensive managed grassland, NDVI, coherence, Satellite Image Time Series, Random Forest, feature selection
Vrsta gradiva:Članek v reviji
Tipologija:1.01 - Izvirni znanstveni članek
Organizacija:FGG - Fakulteta za gradbeništvo in geodezijo
Status publikacije:Objavljeno
Različica publikacije:Objavljena publikacija
Leto izida:2022
Št. strani:21 str.
Številčenje:Vol. 14, iss. 14, art. 3387
PID:20.500.12556/RUL-138330 Povezava se odpre v novem oknu
UDK:528
ISSN pri članku:2072-4292
DOI:10.3390/rs14143387 Povezava se odpre v novem oknu
COBISS.SI-ID:115487491 Povezava se odpre v novem oknu
Datum objave v RUL:15.07.2022
Število ogledov:1169
Število prenosov:93
Metapodatki:XML DC-XML DC-RDF
:
Kopiraj citat
Objavi na:Bookmark and Share

Gradivo je del revije

Naslov:Remote sensing
Skrajšan naslov:Remote sens.
Založnik:MDPI
ISSN:2072-4292
COBISS.SI-ID:32345133 Povezava se odpre v novem oknu

Licence

Licenca:CC BY 4.0, Creative Commons Priznanje avtorstva 4.0 Mednarodna
Povezava:http://creativecommons.org/licenses/by/4.0/deed.sl
Opis:To je standardna licenca Creative Commons, ki daje uporabnikom največ možnosti za nadaljnjo uporabo dela, pri čemer morajo navesti avtorja.

Sekundarni jezik

Jezik:Slovenski jezik
Ključne besede:ekstenzivno upravljani travniki, intenzivno upravljani travniki, NDVI, koherenca, časovna vrsta satelitskih posnetkov, naključni gozd, izbira značilnosti

Projekti

Financer:ARRS - Agencija za raziskovalno dejavnost Republike Slovenije
Številka projekta:P2-0406
Naslov:Opazovanje Zemlje in geoinformatika

Financer:ARRS - Agencija za raziskovalno dejavnost Republike Slovenije
Številka projekta:P6-0079
Naslov:Antropološke in prostorske raziskave

Financer:ARRS - Agencija za raziskovalno dejavnost Republike Slovenije
Številka projekta:J2-9251
Naslov:M3Sat - Metodologija analize časovnih vrst satelitskih posnetkov različnih senzorjev

Financer:EC - European Commission
Številka projekta:LIFE17/IPE/SI/000011
Naslov:LIFE integrated project for enhanced management of Natura 2000 in Slovenia

Podobna dela

Podobna dela v RUL:
Podobna dela v drugih slovenskih zbirkah:

Nazaj