izpis_h1_title_alt

Revising cadastral data on land boundaries using deep learning in image-based mapping
ID Fetai, Bujar (Avtor), ID Grigillo, Dejan (Avtor), ID Lisec, Anka (Avtor)

.pdfPDF - Predstavitvena datoteka, prenos (6,32 MB)
MD5: F0BE43CA0778524FBA69FF51EA04F1EF
URLURL - Izvorni URL, za dostop obiščite https://www.mdpi.com/2220-9964/11/5/298 Povezava se odpre v novem oknu

Izvleček
One of the main concerns of land administration in developed countries is to keep the cadastral system up to date. The goal of this research was to develop an approach to detect visible land boundaries and revise existing cadastral data using deep learning. The convolutional neural network (CNN), based on a modified architecture, was trained using the Berkeley segmentation data set 500 (BSDS500) available online. This dataset is known for edge and boundary detection. The model was tested in two rural areas in Slovenia. The results were evaluated using recall, precision, and the F1 score—as a more appropriate method for unbalanced classes. In terms of detection quality, balanced recall and precision resulted in F1 scores of 0.60 and 0.54 for Ponova vas and Odranci, respectively. With lower recall (completeness), the model was able to predict the boundaries with a precision (correctness) of 0.71 and 0.61. When the cadastral data were revised, the low values were interpreted to mean that the lower the recall, the greater the need to update the existing cadastral data. In the case of Ponova vas, the recall value was less than 0.1, which means that the boundaries did not overlap. In Odranci, 21% of the predicted and cadastral boundaries overlapped. Since the direction of the lines was not a problem, the low recall value (0.21) was mainly due to overly fragmented plots. Overall, the automatic methods are faster (once the model is trained) but less accurate than the manual methods. For a rapid revision of existing cadastral boundaries, an automatic approach is certainly desirable for many national mapping and cadastral agencies, especially in developed countries.

Jezik:Angleški jezik
Ključne besede:geodesy, land, visible boundary, cadastre, maintenance, UAV, deep learning
Vrsta gradiva:Članek v reviji
Tipologija:1.01 - Izvirni znanstveni članek
Organizacija:FGG - Fakulteta za gradbeništvo in geodezijo
Status publikacije:Objavljeno
Različica publikacije:Objavljena publikacija
Leto izida:2022
Št. strani:17 str.
Številčenje:Vol. 11, iss. 5, art. 298
PID:20.500.12556/RUL-137057 Povezava se odpre v novem oknu
UDK:528.4
ISSN pri članku:2220-9964
DOI:10.3390/ijgi11050298 Povezava se odpre v novem oknu
COBISS.SI-ID:107071235 Povezava se odpre v novem oknu
Datum objave v RUL:31.05.2022
Število ogledov:847
Število prenosov:179
Metapodatki:XML DC-XML DC-RDF
:
Kopiraj citat
Objavi na:Bookmark and Share

Gradivo je del revije

Naslov:ISPRS international journal of geo-information
Skrajšan naslov:ISPRS int. j. geo-inf.
Založnik:MDPI
ISSN:2220-9964
COBISS.SI-ID:18678550 Povezava se odpre v novem oknu

Licence

Licenca:CC BY 4.0, Creative Commons Priznanje avtorstva 4.0 Mednarodna
Povezava:http://creativecommons.org/licenses/by/4.0/deed.sl
Opis:To je standardna licenca Creative Commons, ki daje uporabnikom največ možnosti za nadaljnjo uporabo dela, pri čemer morajo navesti avtorja.

Sekundarni jezik

Jezik:Slovenski jezik
Ključne besede:geodezija, zemljišče, vidna meja, kataster, vzdrževanje, UAV, globoko učenje

Projekti

Financer:ARRS - Agencija za raziskovalno dejavnost Republike Slovenije
Številka projekta:P2-0406
Naslov:Opazovanje Zemlje in geoinformatika

Financer:ARRS - Agencija za raziskovalno dejavnost Republike Slovenije
Številka projekta:V2-1934
Naslov:Ovrednotenje različnih načinov označitve katastrskih mejnikov za fotogrametrično izmero z letalnikom in analiza njihovega vpliva na položajno točnost oblaka točk in ortofota

Financer:Drugi - Drug financer ali več financerjev
Program financ.:Republic of Slovenia, Surveying and Mapping Authority

Podobna dela

Podobna dela v RUL:
Podobna dela v drugih slovenskih zbirkah:

Nazaj