Nanocomposites prepared with carbon nanotubes open up new areas of application of nanocomposites and understanding of physicochemical inteactions, where nanotubes are a superior nanofiller due to their unique properties. Their exceptional strength and ability to efficiently transfer electrons are just some properties that give them a special place in mechanics and electronics. It turns out that nanotubes form a randomly connected network in the matrix material already at low concentrations, which significantly changes the physical properties of the material. In the presented work, we studied the effect of volume fraction on material reinforcement and the change of time-dependent properties. The results showed that the addition of nanotubes improves the mechanical behaviour of the material only when a network is established. The formation of the network above the percolation limit speeds up time-dependent processes, which weakens the material.
|