izpis_h1_title_alt

Mechanical and electrical interaction of biological membranes with nanoparticles and nanostructured surfaces
ID Raval, Jeel (Author), ID Gongadze, Ekaterina (Author), ID Benčina, Metka (Author), ID Junkar, Ita (Author), ID Rawat, Niharika (Author), ID Mesarec, Luka (Author), ID Kralj-Iglič, Veronika (Author), ID Góźdź, Wojciech (Author), ID Iglič, Aleš (Author)

.pdfPDF - Presentation file, Download (4,74 MB)
MD5: 5767F3D0FDE50761A9E00B07F0769F16
URLURL - Source URL, Visit https://www.mdpi.com/2077-0375/11/7/533 This link opens in a new window

Abstract
In this review paper, we theoretically explain the origin of electrostatic interactions between lipid bilayers and charged solid surfaces using a statistical mechanics approach, where the orientational degree of freedom of lipid head groups and the orientational ordering of the water dipoles are considered. Within the modified Langevin Poisson–Boltzmann model of an electric double layer, we derived an analytical expression for the osmotic pressure between the planar zwitterionic lipid bilayer and charged solid planar surface. We also show that the electrostatic interaction between the zwitterionic lipid head groups of the proximal leaflet and the negatively charged solid surface is accompanied with a more perpendicular average orientation of the lipid head-groups. We further highlight the important role of the surfaces’ nanostructured topography in their interactions with biological material. As an example of nanostructured surfaces, we describe the synthesis of TiO$_2$ nanotubular and octahedral surfaces by using the electrochemical anodization method and hydrothermal method, respectively. The physical and chemical properties of these nanostructured surfaces are described in order to elucidate the influence of the surface topography and other physical properties on the behavior of human cells adhered to TiO$_2$ nanostructured surfaces. In the last part of the paper, we theoretically explain the interplay of elastic and adhesive contributions to the adsorption of lipid vesicles on the solid surfaces. We show the numerically predicted shapes of adhered lipid vesicles corresponding to the minimum of the membrane free energy to describe the influence of the vesicle size, bending modulus, and adhesion strength on the adhesion of lipid vesicles on solid charged surfaces.

Language:English
Keywords:lipid bilayer electrostatics, zwitterionic lipid bilayers, electric double layer, osmotic pressure, orientational degree of freedom of lipid headgroups, orientational ordering of water dipoles, adhesion of lipid vesicles, lipid bilayer elasticity, lipid vesicle shapes
Work type:Article
Typology:1.02 - Review Article
Organization:FE - Faculty of Electrical Engineering
ZF - Faculty of Health Sciences
MF - Faculty of Medicine
Publication status:Published
Publication version:Version of Record
Year:2021
Number of pages:20 str.
Numbering:Vol. 11, iss. 7, art. 533
PID:20.500.12556/RUL-136016 This link opens in a new window
UDC:577
ISSN on article:2077-0375
DOI:10.3390/membranes11070533 This link opens in a new window
COBISS.SI-ID:70365955 This link opens in a new window
Publication date in RUL:06.04.2022
Views:747
Downloads:152
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Record is a part of a journal

Title:Membranes
Shortened title:Membranes
Publisher:MDPI
ISSN:2077-0375
COBISS.SI-ID:519125529 This link opens in a new window

Licences

License:CC BY 4.0, Creative Commons Attribution 4.0 International
Link:http://creativecommons.org/licenses/by/4.0/
Description:This is the standard Creative Commons license that gives others maximum freedom to do what they want with the work as long as they credit the author.
Licensing start date:14.07.2021

Secondary language

Language:Slovenian
Keywords:elektrostatski lipidni dvosloj, zwitterionski lipidni dvosloj, električni dvojni sloj, osmotski tlak, svobodna orientacijska stopnja lipidnih skupin, orientirano urejanje vodnih dipolov, adhezija lipidnih veziklov, elastičnost lipidnih dvoslojev, oblike lipidnh veziklov

Projects

Funder:EC - European Commission
Funding programme:H2020
Project number:801338
Name:Extracellular vesicles from a natural source for tailor-made nanomaterials
Acronym:VES4US

Funder:ARRS - Slovenian Research Agency
Project number:P2-0232
Name:Funkcije in tehnologije kompleksnih sistemov

Funder:ARRS - Slovenian Research Agency
Project number:P3-0388
Name:Mehanizmi varovanja zdravja

Funder:ARRS - Slovenian Research Agency
Project number:J3-9262
Name:Napredne tehnologije obdelave individualiziranih 3D tiskanih implantatov za preprečevanje bakterijskih okužb

Funder:ARRS - Slovenian Research Agency
Project number:J1-9162
Name:Neurotoksičnost ali neuroprotektivnost nanomaterialov: vpliv biokorone

Funder:ARRS - Slovenian Research Agency
Project number:J2-8166
Name:Anizotropni magnetni nanodelci za magneto-mehansko zdravljenje raka

Funder:EC - European Commission
Funding programme:H2020
Project number:711859
Name:Interdisciplinary NAnoscience School: from phenoMEnology to applicationS
Acronym:NaMeS

Funder:Other - Other funder or multiple funders
Funding programme:Poland, Ministry of Science and Higher Education

Funder:Other - Other funder or multiple funders
Funding programme:NCN
Project number:2018/30/Q/ST3/00434

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back