izpis_h1_title_alt

An approximate GEMM unit for energy-efficient object detection
ID Pilipović, Ratko (Avtor), ID Risojević, Vladimir (Avtor), ID Božič, Janko (Avtor), ID Bulić, Patricio (Avtor), ID Lotrič, Uroš (Avtor)

.pdfPDF - Predstavitvena datoteka, prenos (4,22 MB)
MD5: 00FF73424D011A10FDACAF3E3E755D83
URLURL - Izvorni URL, za dostop obiščite https://www.mdpi.com/1424-8220/21/12/4195 Povezava se odpre v novem oknu

Izvleček
Edge computing brings artificial intelligence algorithms and graphics processing units closer to data sources, making autonomy and energy-efficient processing vital for their design. Approximate computing has emerged as a popular strategy for energy-efficient circuit design, where the challenge is to achieve the best tradeoff between design efficiency and accuracy. The essential operation in artificial intelligence algorithms is the general matrix multiplication (GEMM) operation comprised of matrix multiplication and accumulation. This paper presents an approximate general matrix multiplication (AGEMM) unit that employs approximate multipliers to perform matrix–matrix operations on four-by-four matrices given in sixteen-bit signed fixed-point format. The synthesis of the proposed AGEMM unit to the 45 nm Nangate Open Cell Library revealed that it consumed only up to 36% of the area and 25% of the energy required by the exact general matrix multiplication unit. The AGEMM unit is ideally suited to convolutional neural networks, which can adapt to the error induced in the computation. We evaluated the AGEMM units’ usability for honeybee detection with the YOLOv4-tiny convolutional neural network. The results implied that we can deploy the AGEMM units in convolutional neural networks without noticeable performance degradation. Moreover, the AGEMM unit’s employment can lead to more area- and energy-efficient convolutional neural network processing, which in turn could prolong sensors’ and edge nodes’ autonomy.

Jezik:Angleški jezik
Ključne besede:approximate computing, logarithmic multiplier, computer arithmetic, energy-efficient processing, tensor core, approximate general matrix multiplication, GEMM, matrix core, approximate multipliers, convolutional neural networks, object detection, YOLOv4-tiny, honeybee detection
Vrsta gradiva:Članek v reviji
Tipologija:1.01 - Izvirni znanstveni članek
Organizacija:FRI - Fakulteta za računalništvo in informatiko
BF - Biotehniška fakulteta
Status publikacije:Objavljeno
Različica publikacije:Objavljena publikacija
Leto izida:2021
Št. strani:19 str.
Številčenje:Vol. 21, iss. 12, art. 4195
PID:20.500.12556/RUL-135589 Povezava se odpre v novem oknu
UDK:004
ISSN pri članku:1424-8220
DOI:10.3390/s21124195 Povezava se odpre v novem oknu
COBISS.SI-ID:67593475 Povezava se odpre v novem oknu
Datum objave v RUL:21.03.2022
Število ogledov:1580
Število prenosov:127
Metapodatki:XML DC-XML DC-RDF
:
Kopiraj citat
Objavi na:Bookmark and Share

Gradivo je del revije

Naslov:Sensors
Skrajšan naslov:Sensors
Založnik:MDPI
ISSN:1424-8220
COBISS.SI-ID:10176278 Povezava se odpre v novem oknu

Licence

Licenca:CC BY 4.0, Creative Commons Priznanje avtorstva 4.0 Mednarodna
Povezava:http://creativecommons.org/licenses/by/4.0/deed.sl
Opis:To je standardna licenca Creative Commons, ki daje uporabnikom največ možnosti za nadaljnjo uporabo dela, pri čemer morajo navesti avtorja.
Začetek licenciranja:18.06.2021

Sekundarni jezik

Jezik:Slovenski jezik
Ključne besede:približno računanje, logaritemski množilnik, računalniška aritmetika, energijsko učinkovito procesiranje, tensorsko jedro

Projekti

Financer:ARRS - Agencija za raziskovalno dejavnost Republike Slovenije
Številka projekta:P2-0359
Naslov:Vseprisotno računalništvo

Financer:ARRS - Agencija za raziskovalno dejavnost Republike Slovenije
Številka projekta:P2-0241
Naslov:Sinergetika kompleksnih sistemov in procesov

Financer:ARRS - Agencija za raziskovalno dejavnost Republike Slovenije
Številka projekta:BI-BA/19-20-047

Financer:Drugi - Drug financer ali več financerjev
Program financ.:Bosnia and Herzegovina, Ministry of Civil Affairs

Podobna dela

Podobna dela v RUL:
Podobna dela v drugih slovenskih zbirkah:

Nazaj