Vaš brskalnik ne omogoča JavaScript!
JavaScript je nujen za pravilno delovanje teh spletnih strani. Omogočite JavaScript ali pa uporabite sodobnejši brskalnik.
Nacionalni portal odprte znanosti
Odprta znanost
DiKUL
slv
|
eng
Iskanje
Brskanje
Novo v RUL
Kaj je RUL
V številkah
Pomoč
Prijava
Analysis of human exposure to landslides with a GIS multiscale approach
ID
Modugno, Sirio
(
Avtor
),
ID
Johnson, Sarah C. M.
(
Avtor
),
ID
Borrelli, Pasquale
(
Avtor
),
ID
Alam, Edris
(
Avtor
),
ID
Bezak, Nejc
(
Avtor
),
ID
Balzter, Heiko
(
Avtor
)
PDF - Predstavitvena datoteka,
prenos
(2,19 MB)
MD5: 1DD30209AF57560CA7AE87E79BA874EA
URL - Izvorni URL, za dostop obiščite
https://link.springer.com/content/pdf/10.1007/s11069-021-05186-7.pdf
Galerija slik
Izvleček
Decision-making plays a key role in reducing landslide risk and preventing natural disasters. Land management, recovery of degraded lands, urban planning, and environmental protection in general are fundamental for mitigating landslide hazard and risk. Here, we present a GIS-based multi-scale approach to highlight where and when a country is affected by a high probability of landslide occurrence. In the first step, a landslide human exposure equation is developed considering the landslide susceptibility triggered by rain as hazard, and the population density as exposed factor. The output, from this overview analysis, is a global GIS layer expressing the number of potentially affected people by month, where the monthly rain is used to weight the landslide hazard. As following step, Logistic Regression (LR) analysis was implemented at a national and local level. The Receiver Operating Characteristic indicator is used to understand the goodness of a LR model. The LR models are defined by a dependent variable, presence–absence of landslide points, versus a set of independent environmental variables. The results demonstrate the relevance of a multi-scale approach, at national level the biophysical variables are able to detect landslide hotspot areas, while at sub-regional level geomorphological aspects, like land cover, topographic wetness, and local climatic condition have greater explanatory power.
Jezik:
Angleški jezik
Ključne besede:
disaster risk reduction
,
landslide probability
,
logistic regression
,
landslide trigger factors
,
GIS model
,
global map
Vrsta gradiva:
Članek v reviji
Tipologija:
1.01 - Izvirni znanstveni članek
Organizacija:
FGG - Fakulteta za gradbeništvo in geodezijo
Status publikacije:
Objavljeno
Različica publikacije:
Objavljena publikacija
Datum objave:
10.01.2022
Leto izida:
2022
Št. strani:
[26] f.
Številčenje:
Vol. 10. jan.
PID:
20.500.12556/RUL-135500
UDK:
502/504:55
ISSN pri članku:
0921-030X
DOI:
10.1007/s11069-021-05186-7
COBISS.SI-ID:
93500419
Datum objave v RUL:
16.03.2022
Število ogledov:
723
Število prenosov:
115
Metapodatki:
Citiraj gradivo
Navadno besedilo
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
Kopiraj citat
Objavi na:
Gradivo je del revije
Naslov:
Natural hazards
Skrajšan naslov:
Nat. hazards
Založnik:
Kluwer Academic Pubishers
ISSN:
0921-030X
COBISS.SI-ID:
9844229
Sekundarni jezik
Jezik:
Slovenski jezik
Ključne besede:
zmanjševanje tveganja
,
plazovi
,
regresija
,
sprožitveni dejavniki
,
GIS
,
globalna karta
Podobna dela
Podobna dela v RUL:
Podobna dela v drugih slovenskih zbirkah:
Nazaj