The research looks into the problem of pharma stocks price trend prediction. The aim of this research is to create a prediction model that would classify stock trends with high precision. That would allow the user to achieve higher returns on the initial investment than the existing models deliver. The main parameter on which the predictive model is based is news posted on press release pages of pharma companies. These have been used due to the large impact they have on price fluctuations. In addition, price momentum before and after an event has been used, as well as the search trends in Google's search engine.
The final results show that the proposed system achieves an 85.2% accuracy. In the case of an investment of EUR 1,000, the forecast model would generate a 490\%\ return or EUR 4,928 of profit within 34 months.
|