Vaš brskalnik ne omogoča JavaScript!
JavaScript je nujen za pravilno delovanje teh spletnih strani. Omogočite JavaScript ali pa uporabite sodobnejši brskalnik.
Repozitorij Univerze v Ljubljani
Nacionalni portal odprte znanosti
Odprta znanost
DiKUL
slv
|
eng
Iskanje
Brskanje
Novo v RUL
Kaj je RUL
V številkah
Pomoč
Prijava
Podrobno
Določanje elastičnih konstant nematskega tekočega kristala z uporabo nevronskih mrež
ID
Zaplotnik, Jaka
(
Avtor
),
ID
Ravnik, Miha
(
Mentor
)
Več o mentorju...
PDF - Predstavitvena datoteka,
prenos
(7,28 MB)
MD5: 2E1315CB06C02818F6A225DA7356FBE6
Galerija slik
Izvleček
Tri elastične konstante, ki pripadajo trem osnovnim deformacijam orientacijske ureditve molekul nematskega tekočega kristala (pahljačasti, zvojni in upogibni), določajo ravnovesno ureditev in relaksacijsko dinamiko iz neravnovesnega stanja. V magistrskem delu razvijemo novo metodo določanja elastičnih konstant nematskih tekočih kristalov na osnovi kombinacije mezoskopskega numeričnega modeliranja in strojnega učenja nevronskih mrež. Elastične konstante določimo tako, da približno 10⁵-krat z minimizacijo Frank-Oseenove elastične proste energije simuliramo relaksacijo tekočega kristala z naključnimi elastičnimi konstantami iz poljubne začetne konfiguracije direktorja v ravnovesno stanje. Hkrati z uporabo Jonesovega matričnega formalizma izračunavamo intenziteto skozi vzorec prepuščene monokromatske svetlobe. Tako dobljene časovne odvisnosti intenzitete in pripadajoče elastične konstante uporabimo kot učno množico za učenje nevronske mreže, s katero aproksimiramo netrivialno funkcijo, ki iz časovne odvisnosti intenzitete svetlobe napoveduje elastične konstante. V magistrskem delu pokažemo, katere od konstant lahko določimo v značilnih tipih tekočekristalnih celic. Predstavimo še, kako nevronsko mrežo, naučeno s podatki, ki so pridobljeni z numeričnimi simulacijami, lahko uporabimo tudi za napovedovanje elastičnih konstant iz eksperimentalno izmerjenih podatkov. Naše delo prispeva k razvoju uporabe metod strojnega učenja v fiziki mehkih snovi kot novemu močnemu metodološkemu pristopu, posebej v povezavi med modeliranjem in eksperimenti.
Jezik:
Slovenski jezik
Ključne besede:
strojno učenje
,
nematski tekoči kristal
,
nevronska mreža
,
elastične konstante
,
Frank-Oseenova prosta energija
,
numerična simulacija
,
optika
Vrsta gradiva:
Magistrsko delo/naloga
Tipologija:
2.09 - Magistrsko delo
Organizacija:
FMF - Fakulteta za matematiko in fiziko
Leto izida:
2021
PID:
20.500.12556/RUL-134367
COBISS.SI-ID:
75969283
Datum objave v RUL:
11.01.2022
Število ogledov:
1677
Število prenosov:
325
Metapodatki:
Citiraj gradivo
Navadno besedilo
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
ZAPLOTNIK, Jaka, 2021,
Določanje elastičnih konstant nematskega tekočega kristala z uporabo nevronskih mrež
[na spletu]. Magistrsko delo. [Dostopano 19 junij 2025]. Pridobljeno s: https://repozitorij.uni-lj.si/IzpisGradiva.php?lang=slv&id=134367
Kopiraj citat
Objavi na:
Sekundarni jezik
Jezik:
Angleški jezik
Naslov:
Determining Elastic Constants of Nematic Liquid Crystals Using Neural Networks
Izvleček:
In a nematic liquid crystal, three elastic constants related to three deformation modes of the orientational order (splay, twist and bend) govern the orientational configuration in the equilibrium, as well as the leading relaxational dynamics. In this MSc thesis, a new method for determining elastic constants of nematic liquid crystals is developed based on the combination of mesoscopic continuum modelling and neural networks. First, the relaxation from a random initial state of the nematic liquid crystal to the minimum free energy state is numerically simulated 10⁵ times, using Frank-Oseen free energy minimisation for random values of elastic constants. Simultaneously, the transmittance of the nematic sample for monochromatic polarized light is calculated using the Jones matrix formalism. The obtained time-dependent light transmittances and the corresponding elastic constants form a training data set, based on which a neural network is trained, aiming to approximate a nontrivial function that predicts the unknown elastic constants from the time dependence of the intensity of the transmitted light. This allows us to show which elastic constants can be determined in different types of liquid crystal cells and nematic geometries. In addition, we demonstrate that the neural network, which is originally trained on numerically obtained data, can also be used to determine elastic constants from experimentally measured data. Overall, this work contributes towards the development of machine learning methods in the field of general soft matter, as the new strong methodological tools, allowing us to combine theoretical modelling and experimental approaches.
Ključne besede:
machine learning
,
nematic liquid crystal
,
neural network
,
elastic constants
,
Frank-Oseen free energy
,
numerical simulation
,
optics
Podobna dela
Podobna dela v RUL:
Istospolne družine
Reproduktivne odločitve gejev in lezbijk
Vrednotni profil prebivalcev RS
Vsakdanje življenje istospolnih družin
Istospolne družine in vrtec
Podobna dela v drugih slovenskih zbirkah:
Istospolno starševstvo v Sloveniji in na Škotskem
Posvojitev otrok v istospolne družine; je to etično moralno ali sporno?
Istospolno starševstvo
Nazaj