izpis_h1_title_alt

Impact of GAN-based lesion-focused medical image super-resolution on the robustness of radiomic features
ID Costa de Farias, Erick (Avtor), ID Di Noia, Christian (Avtor), ID Han, Changhee (Avtor), ID Sala, Evis (Avtor), ID Castelli, Mauro (Avtor), ID Rundo, Leonardo (Avtor)

.pdfPDF - Predstavitvena datoteka, prenos (2,58 MB)
MD5: C7C49B3A145F92C7AA10375CE88DE5B7
URLURL - Izvorni URL, za dostop obiščite https://www.nature.com/articles/s41598-021-00898-z Povezava se odpre v novem oknu

Izvleček
Robust machine learning models based on radiomic features might allow for accurate diagnosis, prognosis, and medical decision-making. Unfortunately, the lack of standardized radiomic feature extraction has hampered their clinical use. Since the radiomic features tend to be afected by low voxel statistics in regions of interest, increasing the sample size would improve their robustness in clinical studies. Therefore, we propose a Generative Adversarial Network (GAN)-based lesion-focused framework for Computed Tomography (CT) image Super-Resolution (SR); for the lesion (i.e., cancer) patch-focused training, we incorporate Spatial Pyramid Pooling (SPP) into GAN-Constrained by the Identical, Residual, and Cycle Learning Ensemble (GAN-CIRCLE). At 2x SR, the proposed model achieved better perceptual quality with less blurring than the other considered state-of-the-art SR methods, while producing comparable results at 4x SR. We also evaluated the robustness of our mode's radiomic feature in terms of quantization on a diferent lung cancer CT dataset using Principal Component Analysis (PCA). Intriguingly, the most important radiomic features in our PCA-based analysis were the most robust features extracted on the GAN-super-resolved images. These achievements pave the way for the application of GAN-based image Super-Resolution techniques for studies of radiomics for robust biomarker discovery.

Jezik:Angleški jezik
Vrsta gradiva:Članek v reviji
Tipologija:1.01 - Izvirni znanstveni članek
Organizacija:EF - Ekonomska fakulteta
Status publikacije:Objavljeno
Različica publikacije:Objavljena publikacija
Leto izida:2021
Št. strani:Str. 1-12
Številčenje:Vol. 11, art. 21361
PID:20.500.12556/RUL-134022 Povezava se odpre v novem oknu
UDK:659.2:004
ISSN pri članku:2045-2322
DOI:10.1038/s41598-021-00898-z Povezava se odpre v novem oknu
COBISS.SI-ID:83224579 Povezava se odpre v novem oknu
Datum objave v RUL:22.12.2021
Število ogledov:808
Število prenosov:134
Metapodatki:XML DC-XML DC-RDF
:
Kopiraj citat
Objavi na:Bookmark and Share

Gradivo je del revije

Naslov:Scientific reports
Skrajšan naslov:Sci. rep.
Založnik:Nature Publishing Group
ISSN:2045-2322
COBISS.SI-ID:18727432 Povezava se odpre v novem oknu

Licence

Licenca:CC BY 4.0, Creative Commons Priznanje avtorstva 4.0 Mednarodna
Povezava:http://creativecommons.org/licenses/by/4.0/deed.sl
Opis:To je standardna licenca Creative Commons, ki daje uporabnikom največ možnosti za nadaljnjo uporabo dela, pri čemer morajo navesti avtorja.
Začetek licenciranja:01.11.2021

Projekti

Financer:WT - Wellcome Trust
Program financ.:Innovator Award, UK
Številka projekta:215733/Z/19/Z

Financer:FCT - Fundação para a Ciência e a Tecnologia, I.P.
Številka projekta:DSAIPA/DS/0022/2018
Naslov:GADgET

Financer:ARRS - Agencija za raziskovalno dejavnost Republike Slovenije
Program financ.:Raziskovalni program
Številka projekta:P5-0410
Naslov:Digitalizacija kot gonilo trajnostnega razvoja posameznika, organizacij in družbe

Podobna dela

Podobna dela v RUL:
Podobna dela v drugih slovenskih zbirkah:

Nazaj