izpis_h1_title_alt

Gelfond-Schneiderjev izrek
ID Ozebek, Dejan (Author), ID Slapar, Marko (Mentor) More about this mentor... This link opens in a new window, ID Boc Thaler, Luka (Comentor)

URLURL - Presentation file, Visit http://pefprints.pef.uni-lj.si/7050/ This link opens in a new window

Abstract
V magistrskem delu dokažemo iracionalnosti števil e, π 2 in √n m, kjer m, n ∈ N in √n m ∈/ N, ki potekajo s protislovjem. Poleg tega dokažemo tudi transcendentnost števil e in π, ki imata nekoliko različen potek dokaza, saj se dokaz transcendentnosti števila π posluži tudi teorije elementarnih simetričnih polinomov. V zadnjem poglavju predstavimo še dokaz Gelfond Schneiderjevega izreka, o transcendentnosti števil oblike α β , kjer je α 6= 0, 1 in β iracionalno število. Gre namreč za enega redkih zapisov dokaza Gelfond Schneiderjevega izreka v slovenskem jeziku, saj se ta pojavi le še v diplomskem delu iz leta 1978 [6]. Ob koncu še naštejemo nekaj posledic tega izreka in hkrati navedemo nekaj avtorjev, ki so nadaljevali z raziskovanjem transcendentnih števil.

Language:Slovenian
Keywords:algebraična števila
Work type:Master's thesis/paper
Typology:2.09 - Master's Thesis
Organization:PEF - Faculty of Education
Year:2021
PID:20.500.12556/RUL-133655 This link opens in a new window
COBISS.SI-ID:88148227 This link opens in a new window
Publication date in RUL:13.12.2021
Views:849
Downloads:340
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Gelfond-Schneider theorem
Abstract:
In this masters thesis we prove by contradiction the irrationality of the numbers e, π 2 , and √n m, where m, n ∈ N and √n m ∈/ N. Alongside we also prove the transcendence of the numbers e and π, which have distinctly different proofs, as the proof for the transcendence of the number π makes use of the theory of elementary symmetric polynomials. In the last chapter, we also prove the main theorem of this work, which is the Gelfond-Schneider theorem on the transcendence of numbers of the form α β , where α 6= 0, 1 and β is irrational. This work is one of the rare translations of this theorem in Slovene; the only other translation appears in an undergraduate thesis from 1978 [6]. We conclude the thesis by listing several consequences of the theorem and a number of authors who advanced the work in transcendental number theory.

Keywords:algebraic numbers

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back