izpis_h1_title_alt

Panoptična segmentacija za detekcijo vodnih ovir
ID NENDL, JURE (Avtor), ID Kristan, Matej (Mentor) Več o mentorju... Povezava se odpre v novem oknu

.pdfPDF - Predstavitvena datoteka, prenos (8,31 MB)
MD5: F7494C904EC87149BD3F68203A1A2935

Izvleček
V nalogi analiziramo metodo panoptične segmentacije na problemu detekcije vodnih ovir. Panoptična segmentacija je sposobna segmentacije detekcije objektov in segmenatacijo območji, ki jih ni možno opisati kot objekte. Da lahko bolje analiziramo rezultate panoptične segmentacije, smo se odločili za referenco uporabiti kombinacijo metod semantične segmentacije WaSR in segmentacijo primerkov Mask R-CNN. Za učenje metod uporabimo morsko podatkovno množico MaSTr1325, ki je namenjena za semantično segmentacijo, zato jo obdelamo v primerno obliko še za segmentacijo primerkov in panoptično segmentacijo. Analizo rezultatov naučenih metod nato izvedemo na morski podatkovni zbirki MODS z že pripravljenim evalvatorjem. Rezultati evalvacije semantične segmentacije so zelo podobni, kjer se WaSR še vedno rahlo izkaže s 3,1% boljšo oceno F1 v nevarnem območju in 0,3% boljšo oceno v celotnem območju. Pri analizi segmentacije primerkov opazimo, da ni bistvene razlike v oceni F1 med metodama Mask R-CNN in Panoptic-Deeplab, vendar je večji vzrok za to v načinu, kako Panoptic-Deeplab izrisuje očrtane okvirje. Ker se Panoptic-Deeplab izkaže, kot učinkovita metoda z vzporedno vejo detekcije objektov, predlagamo, kot predmet nadaljnjega dela, podobno implementacijo pri metodi WaSR, ki bi dodala možnost izvajanja panoptične segmentacije.

Jezik:Slovenski jezik
Ključne besede:Panoptic-Deeplab, WaSR, Mask R-CNN, MODS, vodne ovire, vodno avtonomno plovilo
Vrsta gradiva:Diplomsko delo/naloga
Tipologija:2.11 - Diplomsko delo
Organizacija:FRI - Fakulteta za računalništvo in informatiko
Leto izida:2021
PID:20.500.12556/RUL-133375 Povezava se odpre v novem oknu
COBISS.SI-ID:86448899 Povezava se odpre v novem oknu
Datum objave v RUL:24.11.2021
Število ogledov:658
Število prenosov:84
Metapodatki:XML RDF-CHPDL DC-XML DC-RDF
:
Kopiraj citat
Objavi na:Bookmark and Share

Sekundarni jezik

Jezik:Angleški jezik
Naslov:Panoptic segmentation for maritime obstacle detection
Izvleček:
In this final thesis we analyse a panoptic segmentation method on a water surface detection problem. Panoptic segmentation is capable of object detection segmentation and segmentation of areas, that can't be classified as objects. So that we can better analyse the results of panoptic segmentation, we decided to use combination of the semantic segmentation method WaSR and instance segmentation Mask R-CNN as a reference. The training of these methods is done on the MaSTr1325 dataset, meant for semantic segmentation, which is why we process it in to appropriate from for instance and panoptic segmentation. Result analysis of the trained methods is done on the MODS dataset with an already prepared evaluator. The results of semantic segmentation are very similar where WaSR still lightly takes the lead with 3,1% F1 score advantage in the danger zone and 0,3% advantage in the entire zone. In the analysis of instance segmentation we notice that there isn't much difference in the F1 score between Mask R-CNN and Panoptic-Deeplab methods, however the main reason for this is due to how Panoptic-Deeplab draws out bounding boxes. Because Panoptic-Deeplab shows as an effective method with a parallel object detection branch, we propose, as a subject of further work, a similar implementation to the WaSR method, adding it the capability of outputting panoptic segmentation.

Ključne besede:Panoptic-Deeplab, WaSR, Mask R-CNN, MODS, water obstacles, unmanned surface vehicle

Podobna dela

Podobna dela v RUL:
Podobna dela v drugih slovenskih zbirkah:

Nazaj