izpis_h1_title_alt

Predicting tree species based on the geometry and intensity of aerial laser scanning point cloud of treetops
ID Kranjec, Nina (Avtor), ID Triglav Čekada, Mihaela (Avtor), ID Kobal, Milan (Avtor)

.pdfPDF - Predstavitvena datoteka, prenos (3,65 MB)
MD5: 2811396B2607FDD43D053B516C5EE476

Izvleček
Based on the laser point clouds of 240 individual trees that were also identified in the field, we developed decision trees to distinguish deciduous and coniferous trees and individual tree species: Picea abies, Larix decidua, Pinus sylvestris, Fagus sylvatica, Acer pseudoplatanus, Fraxinus excelsior. The volume of the upper part of the tree crown (height of 3 m) and the average intensity of the laser reflections were used as explanatory variables. There were four aerial laser datasets: May 2012, September 2012, March 2013 and July 2015. We found that the combination of the volume and the average intensity of the first three laser datasets was the most reliable for predicting the selected tree species (60% model performance). A slightly poorer model performance was obtained if only the average intensity of the first three datasets was used (54% model performance). The worst model performance was given by the intensities (31 % model performance) or the volumes (21 % model performance) of dataset 4, which represents the national laser scanning of Slovenia (LSS). The best performing was the deciduous and coniferous separation, which achieved 75% and 95% success based on the test data (combination of volume and average intensity of the first three laser datasets). Using only the LSS intensities, deciduous and coniferous trees could be separated with 81% success.

Jezik:Angleški jezik
Ključne besede:lidar, intensity, the geometry of tree, tree species, machine learning, Lithuania, machine learning
Vrsta gradiva:Znanstveno delo
Tipologija:1.01 - Izvirni znanstveni članek
Organizacija:FGG - Fakulteta za gradbeništvo in geodezijo
Status publikacije:Objavljeno
Različica publikacije:Objavljena publikacija
Datum sprejetja članka:20.04.2021
Datum objave:27.05.2021
Leto izida:2021
Št. strani:Str. 234-259
Številčenje:Letn. 65, št. 2
PID:20.500.12556/RUL-132733 Povezava se odpre v novem oknu
UDK:528.715:633/635.055
ISSN pri članku:0351-0271
DOI:10.15292/geodetski-vestnik.2021.02.234-259 Povezava se odpre v novem oknu
COBISS.SI-ID:69702403 Povezava se odpre v novem oknu
Datum objave v RUL:02.11.2021
Število ogledov:946
Število prenosov:158
Metapodatki:XML DC-XML DC-RDF
:
Kopiraj citat
Objavi na:Bookmark and Share

Gradivo je del revije

Naslov:Geodetski vestnik : glasilo Zveze geodetov Slovenije
Skrajšan naslov:Geod. vestn.
Založnik:Zveza geodetov Slovenije
ISSN:0351-0271
COBISS.SI-ID:5091842 Povezava se odpre v novem oknu

Licence

Licenca:CC BY 4.0, Creative Commons Priznanje avtorstva 4.0 Mednarodna
Povezava:http://creativecommons.org/licenses/by/4.0/deed.sl
Opis:To je standardna licenca Creative Commons, ki daje uporabnikom največ možnosti za nadaljnjo uporabo dela, pri čemer morajo navesti avtorja.
Začetek licenciranja:27.05.2021

Sekundarni jezik

Jezik:Slovenski jezik
Naslov:Napovedovanje drevesnih vrst iz geometrije in intenzitete oblaka aerolaserskih točk vrhov drevesnih krošenj
Izvleček:
Na osnovi laserskih oblakov točk 240 posameznih dreves, ki smo jih identificirali tudi na terenu, smo razvili odločitvena drevesa za ločevanje listavcev in iglavcev ter posameznih drevesnih vrst (rdeči bor, navadna bukev, gorski javor, veliki jesen, evropski macesen, navadna smreka). Kot pojasnjevalne spremenljivke smo uporabili volumen zgornjega dela drevesne krošnje (višine 3 m) in povprečno intenziteto laserskih odbojev. Uporabili smo štiri nize aerolaserskih podatkov: iz maja 2012, septembra 2012, marca 2013 in julija 2015. Ugotovili smo, da najzanesljivejše rezultate za napovedovanje izbranih drevesnih vrst daje kombinacija volumna in povprečne intenzitete prvih treh laserskih nizov (uspešnost modela 60 %). Nekoliko nižjo uspešnost modela dobimo, če uporabimo samo povprečno intenziteto prvih treh nizov (54 %). Najslabšo uspešnost modela daje intenziteta niza 4, ki predstavlja lasersko skeniranje Slovenije (LSS ) (31 %) oziroma volumen (21 %). Uspešnejše je razločevanje listavcev in iglavcev, ki na testnih podatkih dosega uspešnost 75 % oziroma 95 % (kombinacija volumna in povprečne intenzitete združenih prvih treh laserskih nizov). Če uporabimo samo intenzitete LSS, listavce in iglavce lahko ločimo z uspešnostjo 81 %.

Ključne besede:lidar, intenziteta, geometrija drevesa, drevesne vrste, strojno učenje, odločitveno drevo

Projekti

Financer:Drugi - Drug financer ali več financerjev
Naslov:Čezmejni projekt Slovenija - Avstrija 2011-2014 - Naravne nesreče brez meja
Akronim:NH-WF

Podobna dela

Podobna dela v RUL:
Podobna dela v drugih slovenskih zbirkah:

Nazaj